
Adaptive Code Unloading for Resource-Constrained JVMs

Lingli Zhang Chandra Krintz
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA, 93106, USA

{lingli z,ckrintz}@cs.ucsb.edu

ABSTRACT
Compile-only JVMs for resource-constrained embedded sys-
tems have the potential for using device resources more ef-
ficiently than interpreter-only systems since compilers can
produce significantly higher quality code and code can be
stored and reused for future invocations. However, this ad-
ditional storage requirement for reuse of native code bod-
ies, introduces memory overhead not imposed in interpreter-
based systems.

In this paper, we present a Java Virtual Machine (JVM)
extension for adaptive code unloading that significantly re-
duces the memory requirements imposed by a compile-only
JVM. The extension features an unloader that uses execu-
tion behavior to adaptively determine when to unload as
well as what code to unload. We implement and empirically
identify a set of unloading strategies that enable significant
code size reduction (43%-61%). This reduction translates
into significant execution time benefits for the benchmarks
and JVM configurations that we studied. As such, by using
adaptive code unloading, we make compile-only JVMs for
embedded devices more feasible.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: code generation, com-
pilers, memory management, run-time environments

General Terms
Languages, Performance

Keywords
resource-constrained devices, JVM, JIT, code unloading, code-
size reduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04,June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

1. INTRODUCTION
Java virtual machines (JVMs) [17] have become increas-

ingly popular for the execution of a wide range of appli-
cations on mobile and embedded devices. Researchers esti-
mate that there will be over 720 million Java-enabled mobile
devices by the year 2005 [21]. This wide-spread use of Java
for embedded systems is the result of the increased capa-
bility of mobile devices, the ease of program development
using the Java language [4], and the security and portabil-
ity enabled by JVM execution.

A Java virtual machine (JVM) translates mobile Java pro-
grams from an architecture-independent format, i.e., byte-
code, into native code for execution. Many JVMs [14, 8, 15]
perform translation using interpretation since interpreters
are simple to implement, impose no perceivable interrup-
tion, and do not require that native code be stored during
execution. However, an interpreted program can be orders
of magnitude slower than compiled code due to poor code
quality, lack of optimization, and re-interpretation of pre-
viously executed code. As such, interpretation wastes sig-
nificant resources of embedded devices, e.g., CPU, memory,
battery, etc. [22, 10]

To overcome the limitations of JVM interpretation, many
JVMs [7, 20, 1, 13] employ just-in-time (JIT), i.e., dynamic,
compilation. The resulting execution performance is higher
than if interpreted due to improved code quality (that results
from translation of multiple instructions at once, exposing
optimization opportunities), and to the reuse enabled by
storing native code. The latter, however, can be a drawback
in a resource-constrained environment since native code is
much larger than its bytecode equivalent. Memory con-
sumed by compiled code reduces that is available to the
executing application, thereby increasing the cost of mem-
ory management, e.g., garbage collection. This cost can be
significant when memory is severely constrained. As such,
these JVMs introduce memory overhead not imposed by
interpreter-only systems.

To reduce this overhead, we developed a framework and
set of adaptive strategies, for native code unloading in compile-
only JVMs for resource-constrained devices. The strategies
that we implemented using the framework seek to adaptively
balance not storing any code (as in an interpreter-based
JVM) and caching all generated code (as in a compiler-based
JVM), according to dynamic memory availability, i.e., the
amount of memory available to the executing application for
allocation of data (as opposed to code) over time.

If an unloaded method is later re-invoked by the execut-
ing application, our system re-compiles it prior to reuse. As

155

such, our system trades off memory management with re-
compilation overhead, dynamically. We designed the frame-
work so that it is highly extensible and can be easily incor-
porated into any compile-only JVM intended for resource-
constrained devices. Our empirical evaluation of the system
shows that we are able to reduce code size by 61% when
resources are highly constrained and by 43% when uncon-
strained. This reduction translates into significant execution
time benefits for the benchmarks and JVM configurations
that we studied.

In the following section, we motivate our work with an
empirical analysis of the memory requirements of compile-
only JVMs and discuss the potential opportunities for native
code unloading. In Section 3, we describe our adaptive code
unloading framework as well as the various strategies that
we investigated. We then empirically compare the various
strategies and evaluate the overall efficacy of the system
in Sections 4 and 5. The remainder of the paper includes
related work (Section 6) and our conclusions (Section 7).

2. CODE UNLOADING OPPORTUNITIES
To investigate the feasibility of adaptive code unloading in

compile-only JVMs, we empirically evaluated the size and
behavior of the native code used by Java programs when
compiled. Table 1 shows the size of bytecode and native
code for the SpecJVM benchmark suite [18]. Column 2 is
bytecode size (in KB) and columns 3–5 show the ratio of
native code size to bytecode size. We generated this data
using two different JVMs: JikesRVM [1] and the Kaffe em-
bedded JVM [15] (using jit3). Since Kaffe has JIT back-ends
for both IA32 and ARM, we present the ratios for both in-
struction sets. This table shows that IA32 native code is 6-8
times that of bytecode for both JikesRVM (IA32) and Kaffe
(IA32). ARM code is at least two times larger than IA32
code. As such, even for 16 bit ISAs, e.g., ARM/THUMB,
which can reduce ARM code size by almost half, the size of
compiled native code is much larger than its corresponding
bytecode.

Byte Native code / Bytecode Dead after
code Jikes Kaffe startup

Benchs (KB) IA32 IA32 ARM KB (Pct.)
compres 12.4 7.9 7.8 17.0 70.8 (72%)
db 14.5 7.3 7.9 16.7 89.2 (85%)
jack 42.4 6.7 7.5 18.6 72.5 (26%)
javac 78.3 6.0 7.1 16.0 75.9 (16%)
jess 32.9 6.8 7.6 17.0 167.9 (75%)
mpeg 56.6 8.0 8.2 24.5 357.4 (79%)
mtrt 21.1 7.6 8.2 N/A 117.6 (73%)

Table 1: Opportunities for code unloading

Interestingly, a large amount of executed code is used only
during program startup (initial 10% of execution time) for
the benchmarks we studied. After startup, this code is never
invoked again, but remains in the system and consumes pre-
cious system memory. The final column in Table 1 shows
the percent of native code that is dead after program startup
(collected from JikesRVM).

Moreover, code that remains in the system after startup
can have short lifetimes, and thus, should also be considered
for unloading. Figure 1 shows that a majority of the code in
many applications has a short life span: the figure graphs the
cumulative distribution functions of effective method lifetime

0 20 40 60 80 100

Effective Lifetime Percentage (%)

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
E

xe
cu

te
d

M
et

ho
ds

 (
%

)

jess
db
javac
mpeg
mtrt
jack
compress

jess
db

javac mpeg mtrt jack
compress

Figure 1: Opportunities for code unloading: short-
lived methods. The figure graphs the cumulative
distributions of effective method lifetimes (time be-
tween its first and last invocation) as a percentage
of their total lifetime (time from its first invocation
to the end of the program): A point, (x, y), on a
curve indicates that y% of that benchmark’s exe-
cuted methods have an effective lifetime of less than
x% of its total lifetime.

percentage, i.e., the percentage of the effective lifetime (the
time between the first and last invocation of a method) over
the total method lifetime (the time from its first invocation
to the end of the program). For most of the benchmarks,
over 60% of methods are effectively live for less than 5% of
the total time they are in the system.

In addition, even long-lived methods may be executed in-
frequently during their lifetime. For example, the effective
lifetime of method spec.benchmarks. 213 javac.ClassPath.
<init> is 75%. However, this method is only invoked 4
times during its lifetime and its execution time is only 0.1%
of total effective lifetime. When memory is constrained, such
infrequently used methods can also be considered as unload-
ing candidates to relieve memory pressure.

3. CODE UNLOADING
To exploit the available code unloading opportunities and

to relieve the memory pressure imposed by compile-only
JVMs for memory-constrained devices, we developed an ex-
tensible framework for the implementation of strategies that
decide What code to unload and When unloading should
occur. Since unloading a method that will be invoked later
introduces recompilation overhead, we must find a good bal-
ance between memory pressure and recompilation overhead.

Our framework is depicted in Figure 2 and can be incor-
porated into JVM that implements dynamic compilation.
The darkened components in the figure identify our JVM
extensions. The Code Unloader is the control center of our
system. The Resource Monitor forwards information about
resource behavior to the unloader. This component can be
easily extended to monitor various types of resources; we
currently use it for memory. The monitor collects heap res-
idency data, garbage collection (GC) invocation frequency,
and native code size. The on-line and off-line profilers pro-
vide the unloader with the information about application
behavior. Currently, we collect information about the invo-
cation activity of each method.

Based on information collected from both the resource

156

Method
Bytecode

Dynamic
Compiler

Native
Code

Code
Unloader

Recompile
Stubs

Offline
Profilers

Resource Monitor
heap residency,

GC frequency,

total code size, …

Online
Profilers

hot methods,

total # of invocations

initial
invocation

(direct or via
compile stub)

Replace native
code with

recompile stub

code
invocation
activitity

invocation counter or
sample-based counter

invoked
after unload

data that
may trigger
unloading

decay
profilersinstrumented

or clean code

Figure 2: Overview of code unloading framework

monitor and profilers, the unloader predicts the cost and
benefit of unloading, when code unloading should commence,
and which methods to unload. When a native code body is
selected for unloading, the unloader replaces its address with
that of a recompilation stub, in a way similar to that for the
compilation stub in lazy, dynamic compilation systems [16,
1]; however our stub contains additional information that
guides recompilation if reloading should occur. Once the
address is replaced, the native code block for the method
is no longer reachable by the program and the storage will
be reclaimed during the next garbage collection cycle. If
the method is ever invoked again, the recompilation stub
causes it to be compiled again prior to execution. More-
over, since the unloader (and other framework components)
operate while the program is executing, we designed it to be
very efficient. In the next two sections, we describe the un-
loading strategies that we developed using this framework.

3.1 What to unload?
To identify code that should be unloaded, we must predict

which methods are unlikely to be invoked in the future. To
enable this, we monitor execution and identify methods that
have not been invoked recently. We hypothesize that such
methods are not likely to be invoked in the near future and
can be unloaded. In prior work [24], we investigated four
different “what” strategies:

• Online eXhaustive profiling (OnX)

• Online Sample-based profiling (OnS)

• Offline exhaustive profiling (Off)

• No Profiling (NP)

The strategies, if ranked in order from most aggressive to
least aggressive in terms of unloading, are NP, OnS, OnX
and Off. In the OnX strategy, the compiler instruments
methods so that a mark bit will be set to 1 every time a
method is invoked. In the OnS, however, instead of instru-
mentation, the JVM sets the mark bits of the two methods
on the top of invocation stacks of application threads for ev-
ery thread switch (which occurs approximately every 10 ms
in our prototype JVM). In both strategies, unmarked meth-
ods are unloaded and all marked bits are reset to 0 whenever
an unloading session occurs.

We used the Off strategy to investigate the efficacy of
having perfect knowledge about method lifetimes. In this
strategy, we collect total invocation count for each method
offline; we then annotate the class file with this value which

is extracted by the JVM upon class loading. We unload
methods following their final invocation. In the NP strategy,
we unload all methods that are not currently on the runtime
stack when unloading occurs.

We found that if we performed unloading at regular timer-
triggered intervals, OnS performed best across the bench-
marks and JVM configurations that we studied. This is be-
cause it imposes less profiling overhead than Off and OnX,
and is more aware of application behavior than NP. The
complete results can be found in [24].

3.2 When to unload?
In the initial investigation of this work described above,

we used a naive approach to trigger unloading, i.e., a Timer
Triggered (TM) approach. To implement this strategy effi-
ciently, we approximated time using a thread-switch count
since in our testbed JVM, thread switching occurs at ap-
proximately every 10 ms. This strategy also increments the
count according to the time spent in garbage collection. Us-
ing this approach, our system unloads code at regular in-
tervals. However, such an approach does not account for
the dynamically changing underlying memory availability
and the resource requirements of the executing program.
In addition, such a strategy is not general, i.e., the period
that enables the best performance varies across applications,
JVMs, and available resource levels. To address these limi-
tations, we implemented an adaptive Garbage collection trig-
gered (GC) strategy.

The intuition behind this GC strategy is that the fre-
quency of code unloading should adapt to the dynamically
changing resource behavior. Code unloading should be trig-
gered more frequently when memory is highly constrained to
relief memory pressure, but less frequently otherwise to re-
duce overhead. One measurement that represents memory
usage behavior is heap residency. If the system is short of
memory, the heap residency will be high following garbage
collection. One disadvantage to using heap residency is
that doing so may raise a false alarm. For example, some
programs may allocate only at the beginning of their exe-
cution. In this case, the heap residency may remain high
and exceed the threshold; however, it is not necessary to
perform unloading continuously because no additional allo-
cations will be performed. As such, heap residency alone
is not accurate enough to enable the unloader to make the
accurate unloading decisions. To avoid false alarms, we use
heap residency information indirectly by considering GC fre-
quency. If memory availability becomes severely limited and
heap residency remains high, the garbage collector will be
invoked frequently. To capture this behavior, at the end of
each GC cycle, the resource monitor forwards the percentage
of execution time (so far) that is spent in garbage collection
to the unloader so that it can adjust the frequency of the
unloading sessions.

We use “unloading window”, i.e., the number of garbage
collection cycles, to define unloading frequency. We perform
unloading once for each window. Currently, we use a simple
algorithm to determine the unloading frequency. We divide
a minimal window size specified by a user by the percentage
of time spent in GC; this value is decremented upon each
GC and when it reaches 0, unloading is performed. At the
end of each unloading session, a new unloading window size
is determined using this algorithm.

As we articulated in Section 2, for most benchmarks over

157

70% of code is dead by completion of the first 10% of pro-
gram execution time (startup period). To exploit this phased
behavior, we trigger unloading for different phases in pro-
gram lifetime. Since we cannot know the program lifetime
(and hence, the number of seconds during the initial 10%),
we estimate it using GC cycles. We specify the first 4 GC
cycles (empirically determined and specified via a command-
line parameter) as program startup. During this period,
we base unloading decisions on heap residency. This facili-
tates more aggressive unloading by the unloader. After the
startup period, the unloader uses the percentage of time
spent in GC to avoid false alarms during the steady state of
program execution.

We also investigated two additional code unloading strate-
gies: Maximum call times triggered (MCT) and Code Cache
Size Triggered (CS). For MCT, our goal is to only unload a
method if it will not be invoked in the future so as to avoid
recompilation overhead: When a method completes its final
execution, we unload it. We use offline profiling to estimate
the maximum number of times a method is invoked; the
framework uses this value to unload methods after their last
use. Notice that, if the count is inexact (due to differences in
cross-input behavior, inlining decisions, non-determinism),
some recompilation overhead will be introduced. In addi-
tion, MCT considers only dead code, does not unload infre-
quently executed methods, and does not consider (or adapt
to) underlying resource availability.

The final strategy that we implemented is Code Cache
Size Triggered (CS) unloading. Such a strategy is similar
to that implemented as code pitching in the Common Lan-
guage Runtime (CLR) [3]. For this strategy, we store native
code bodies in a fixed-size code cache. When the cache be-
comes full, we perform unloading. An advantage of this
strategy is that the code size is guaranteed to be less than a
specified maximum. One limitation of this approach is the
determination of an appropriate cache size for all applica-
tions. If the size is too small, execution will thrash between
recompilation and unloading. If the size is too large, the
system acts as if there are no unloading capabilities. An
alternative is to assign a small size initially and allow the
cache to grow as necessary. However, determining how of-
ten and at what increments to grow is similarly difficult and
application-specific.

Regardless of these limitations, we were interested in un-
derstanding the performance impact of this type of strat-
egy. To this end, we implemented this strategy so that is
parameterizable. The parameters include initial cache size,
the growth increment, and the number of unloading sessions
that triggers cache size growth.

3.3 Unloading Optimized Code
We are interested in the performance impact of our code

unloading strategies on JVMs with either fast, non-optimizing
JITs or adaptive optimizing compilers. In our prototype
JVM configured to adaptively optimize, a method slowly
progresses through optimization levels according its hot-
ness. All levels of optimization require significantly more
time than fast compilation. Therefore, it may be more ef-
ficient to recompile unloaded code using fast compilation.
However, if the unloaded method remains hot, it will again
have to progress through the optimization levels, which re-
quires a long period of unoptimized execution and significant
compilation overhead. Thus, how to recompile an unloaded,

previously optimized method will affect the balance of re-
compilation overhead and performance benefits.

To investigate impact of unloading optimized code, we im-
plemented three additional strategies to handle optimized
code. For the first, we add an optimization level hint to the
recompilation stub. If the unloader unloads a hot method
that is later invoked, the system recompiles the method at
the optimization level it was at when it was unloaded. This
strategy eliminates unoptimized execution of hot methods
and is called RO (Reload Optimized methods using the op-
timization hint).

With the second strategy, we avoid unloading hot meth-
ods altogether; the unloader checks whether a method has
been optimized and only unloads it if it was fast-compiled.
We call this strategy EO (Exclude unloading of Optimized
methods). However, some programs have a relatively large
percentage of hot methods. For example, javac has 78 out of
876 hot methods while db only has 3 out of 151 hot methods.
Our third strategy accounts for such cases. Optimized meth-
ods will be unloaded but we delay unloading of them until
they are unused for two consecutive unloading sessions. We
call this strategy, DO(Delay unloading of Optimized meth-
ods).

4. EXPERIMENTAL METHODOLOGY
To evaluate the efficacy of code unloading, we implemented

our framework and various what and when strategies for
adaptive code unloading in the open source Jikes Research
Virtual Machine (JikesRVM) [1] (x86 version 2.2.1) from
IBM Research. Even though this JVM is not intended for
embedded systems, it implements two different compilation
configurations that we believe are likely to be implemented
in next-generation JVMs (embedded or not): Fast, non-
optimizing compilation, and adaptive optimization (in which
only those methods discovered to most impact execution
performance are optimized). By limiting its working mem-
ory to be less than 32 MB, we believe that our results using
JikesRVM as a prototype lend insight into the potential ben-
efits of adaptive code unloading in compile-only JVMs for
resource-restricted environments.

For our experiments, we repeatedly executed the SpecJVM
benchmarks [18] (input 100), on a dedicated Toshiba Protege
2000 laptop (750 MHZ PIII Mobile) running Debian Linux
(kernel v2.4.20). We employed both of the available JVM
configurations, fast and adaptive. In addition, we report re-
sults for two memory configurations: MIN and 32MB. MIN
is the minimum heap size that is required for each bench-
mark to run to completion (identified empirically). MIN is
used to simulate the situation that memory is highly con-
strained, while 32MB is used to simulate the situation that
memory is not highly constrained. In all of our results, we
refer to the reference (unmodified) system as clean.

We show the general benchmark statistics in Table 2 us-
ing the clean system. The left half of Table 2 is for the fast
configuration and the right half is for the adaptive config-
uration. For each half, the first column is the native code
size (for all invoked methods, application and library) in
kilobytes (KB). The second column is empirically identified
MIN value and the last two columns show the application
execution time (in seconds) for both MIN and 32MB config-
urations.

One difficulty in comparing the different when strategies
is that each requires a set of parameters that impact per-

158

Fast configuration Adaptive configuration
Code Min Heap Exec Time (s) Code Min Heap Exec Time (s)

Benchs Size(KB) Size(MB) MIN 32MB Size(KB) Size(MB) MIN 32MB
compress 98.4 20 66.8 61.2 143.8 22 26.3 21.5
db 105.3 22 78.8 50.6 157.8 23 115.6 45.1
jack 284.9 6 624.9 17.9 372.4 9 130.6 18.2
javac 468.5 24 128.9 46.8 582.8 26 152.3 55.5
jess 223.1 8 303.3 27.6 311.8 11 136.4 23.2
mpeg 455.4 9 56.1 54.4 541.4 12 29.7 20.3
mtrt 161.3 18 321.5 29.6 237.8 23 50.4 22.6

Table 2: Benchmark characteristics for both fast and adaptive configuration

formance. Tuning parameters for each application manually
might achieve better performance for that application but is
not general. Thus, we empirically evaluated a wide range of
parameters for each strategy and, for brevity, report results
using best-performing parameter values (on average) across
the benchmarks studied. We use 10 GC cycles as unload
window size for GC (garbage collection triggered), 10 s as
the interval for TM (timer triggered). For CS (code size
triggered), the initial cache size is 64KB and the growth in-
crement is 32KB, and then we grow the code cache each time
10 unloading sessions occur (triggered by a full cache).

5. RESULTS
In this section, we first evaluate the reduction of mem-

ory footprint enabled by different code unloading strategies.
Then, we analyze their impact on execution performance in
details.

5.1 Impact on Memory Footprint
We first present the average code size reduction due to

code unloading across benchmarks, in Table 3. The left half
of the table is for the fast configuration and the right half
is for the adaptive configuration. The initial investigation
of different “what” strategies in [24] shows that strategy
OnS (online, sample-based profile) performs best across the
benchmarks and JVM configurations that we studied. Thus,
for all of the “when” strategies except MCT, we use the
online, sample-based profile “what” strategy (OnS- prefix);
MCT, as described above, requires a precise, offline exhaus-
tive profile of the maximum number of invocations made to
a method (hence, we use the Off- prefix). The adaptive op-
timization system in JikesRVM is non-deterministic in that
it uses timing information to decide when to optimize. As
such, we are unable to collect deterministic offline profile in-
formation about invocation counts of methods compiled by
a given compiler. Thus, we omit the results for MCT for the
adaptive configuration.

Both configurations show a significant code size reduction.
The OnS-GC strategy adapts well to the memory availabil-
ity: the more restricted memory is, the more native code
is unloaded. In contrast, Off-MCT and OnS-CS are not
sensitive to memory pressure. OnS-TM is also sensitive to

When Fast Adaptive
Strategies MIN 32MB MIN 32MB
Off-MCT 42.7 50.9 N/A N/A
OnS-CS 52.0 56.7 40.3 41.6
OnS-GC 61.8 46.3 46.9 36.0
OnS-TM 46.7 30.6 42.8 38.7

Table 3: Comparison of four “when” strategies for
average code size reduction (%)

memory since our implementation of the OnS-TM strategy
is aware of time spent on garbage collection. However, OnS-
TM is not as adaptive as OnS-GC since it does not account
for phase changes in the program execution.

We next provide a more detailed view of how the amount
of code in the system changes over time with and without
unloading. We focus on the best-performing combination of
What and When strategies: online, sample-based profiling
using an unloading trigger of GC invocation count (OnS-
GC).

Figure 3 tracks code size over the lifetime of each bench-
mark program using the minimal heap size in which each
application can run for the fast configuration. The x-axis
is elapsed execution time in seconds and the y-axis is the
native code size in kilobytes. We gathered this data by re-
porting code size following each GC and again at the end
of execution. If unloading occurred during a GC, we report
the code size both before and after unloading. We show
results for the clean system, OnS-GC, and OnX-GC. By in-
cluding OnX-GC, which uses exhaustive profiling to identify
recently unused methods more accurately, we can better un-
derstand the impact of more aggressive unloading like OnS
does. The vertical line for each graph indicates the time at
which the program ends.

This data shows the impact of code unloading on heap
residency. Code size in clean becomes stable after a very
short startup period and remains at a high level until the
application exits. Both OnX-GC and OnS-GC, however,
quickly reduce the code size significantly. OnS-GC is more
aggressive than OnX-GC since it is inaccurate in that it
will unload methods that it believes (incorrectly) were not
used recently. In addition, the unloading strategies exploit
startup phase behavior by unloading code more aggressively
in the early stages of program execution. As we saw in Sec-
tion 2, many applications (such as compress, db, etc.) have
a large amount of dead code following program startup. For
such programs, aggressive unloading during startup dramat-
ically reduces code size.

5.2 Impact on Execution Performance
Reducing code size is not our only concern; if it were,

never caching any code would be the best choice. Our goal
is to achieve the best balance between memory footprint and
execution performance.

The execution performance of a JVM that implements
adaptive code unloading is affected by recompilation over-
head, profiling overhead, and memory management over-
head. Memory management overhead refers to the extra
overhead caused by the stored native code. No matter how
native code is stored in a JVM, when memory is limited,
the more memory allocated for storing native code, the less
memory is available to the application, and the more man-

159

compress jess

0 10 20 30 40 50 60 70

execution time (s)

0

10

20

30

40

50

60

70
co

de
 s

iz
e

(K
B

)

0 40 80 120 160 200 240 280

execution time (s)

0

50

100

150

200

co
de

 s
iz

e
(K

B
)

db javac

0 20 40 60 80

execution time (s)

0

20

40

60

80

co
de

 s
iz

e
(K

B
)

0 20 40 60 80 100 120 140

execution time (s)

0

100

200

300

400

co
de

 s
iz

e
(K

B
)

mpeg mtrt

0 10 20 30 40 50 60

execution time (s)

0

40

80

120

160

co
de

 s
iz

e
(K

B
)

0 40 80 120 160 200 240 280 320

execution time (s)

0

20

40

60

80

100

120

140

co
de

 s
iz

e
(K

B
)

jack

0 100 200 300 400 500 600

execution time (s)

0

50

100

150

200

250

co
de

 s
iz

e
(K

B
)

Clean

OnX-GC

OnS-GC

Figure 3: Code Size Comparison of Clean, OnX and OnS strategies of Fast Configuration

160

co
mpr

es
s db jac

k
jes

s
mpe

g
mtrt

AVG-10

0

10

20

30

40

50

60
Im

pr
ov

em
en

t o
f

ex
e

tim
e

(%
)

Off-MCT
OnS-CS
OnS-GC
OnS-TM

jav
ac

-21.1

co
mpr

es
s

db jac
k

jav
ac

jes
s

mpe
g

mtrt AVG

-15

-10

-5

0

5

Im
pr

ov
em

en
t o

f
ex

e
tim

e
(%

)

Off-MCT
OnS-CS
OnS-GC
OnS-TM

-34.1
(a) MIN (b) 32MB

Figure 4: Percent improvement in execution time for the fast JVM configuration using adaptive code un-
loading. Graph (a) shows results for highly-constrained memory configuration (MIN) and graph (b) shows
the results for the unconstrained (32MB) memory configuration.

agement overhead is caused directly or indirectly by the
stored compiled code. Thus, unloading code when memory
is highly constrained will reduce management overhead to
some degree. The significance of such reduction in terms of
execution performance, however, depends upon how native
code is managed in a JVM.

There are three ways in which native code bodies can be
stored by a JVM: Using a dedicated memory area that is not
managed by the garbage collector (GC), in a GC-managed
heap area separate from the heap used by the application,
and in a GC-managed heap area that is used by the applica-
tion (shared). Storing code in a GC collectable memory area
eases the management of memory used by native code since
it is managed automatically by the garbage collector. How-
ever, this introduces extra GC overhead for managing native
code. Storing code in a dedicated memory area reduces the
interference between the native code and the applications.
However it introduces extra overhead to maintain multiple
heaps and prevents the memory reserved for native code
from being used by applications. Currently, it is unclear
which of the three approaches is the best. For the results
in this paper, we evaluated the execution time impact of
adaptive code unloading for the third option, i.e., storing
code in the same GC-managed heap that is used by the ap-
plication. The default GC in our implementation system is
a semispace copying collector. We plan to investigate other
types of GC management strategies (collectors as well as
code storage options) as part of future work.

Figure 4 shows the performance results due to code un-
loading for the minimum (MIN, left graph) and 32MB (32MB,
right graph) memory configurations. The y-axis in both
graphs is the percent improvement (or degradation) over the
clean system. When memory is highly constrained, unload-
ing some code bodies significantly relieves memory pressure.
As stated above, compiled code is stored in a heap that is
shared by the applications and is managed by the garbage
collection system, for these results. The results indicate
that, for such systems, reducing amount of native code in
the system significantly improves performance when mem-
ory availability is critical since less time is spent in GC. The
average performance improvement achieved by our “when”
strategies is 17.2% for Off-MCT, 18.4% for OnS-CS, 23.0%
for OnS-GC, and 22.2% for OnS-TM.

The overhead of code unloading becomes apparent when
memory is unconstrained, as shown in the right graph (32MB)
in the figure. This overhead is the result of recompila-
tion and profiling. The best-performing strategy is OnS-GC
which uses GC frequency to trigger unloading. The average
improvement (or degradation if negative) is -7.4% for Off-
MCT, -5.8% for OnS-CS, 0.4% for OnS-GC, and -0.2% for
OnS-TM. MCT imposes a high profiling overhead and re-
quires an accurate, input-specific, offline profile, which may
not be realistic for mobile programs. CS works well when
the size of the method working set is similar to that of the
code cache. However, this “perfect” parameter value (code
cache size) is difficult to obtain, is not general, and if inac-
curate, may cause performance degradation when there is
a larger working set size, e.g., as in javac. The code cache
size of javac grows to 360KB at the end of its execution,
which is much larger than the initial code cache size (64KB).
This huge difference between the initial code cache size and
the actual working set size causes significant performance
degradation for javac since it results in many unnecessary
unloading sessions, and thus, introduces large recompilation
overhead.

The performance impact using the adaptive configuration
is similar; as such we omit the results for brevity. We present
optimizations for the adaptive configuration in the next sec-
tion and provide summary results for both configurations in
Section 5.2.2.

5.2.1 Adaptive JVM Configuration
As we discussed in Section 3.3, in the adaptive JVM con-

figuration how to recompile an unloaded, previously opti-
mized method will affect the balance of recompilation over-
head and performance benefits. To investigate impact of
unloading optimized code, we evaluate three additional vari-
ants of OnS in the adaptive optimization JVM configura-
tion. They are: delay unloading of optimized code for an
additional unloading session (OnS-DO), exclude optimized
code when unloading (OnS-EO), and unload optimized code
and re-optimize it at the same level if reloaded (OnS-RO).
The default OnS fast-compiles unloaded optimized methods
upon reloading. We use the best WHEN strategy, i.e., GC
(garbage collection triggered) to evaluate all variants. Fig-
ure 5 shows the performance results of these four variants
for both MIN (a) and 32MB (b) configurations.

161

co
mpr

es
s db jac

k
jav

ac jes
s

mpe
ga

ud
io

mtrt
AVG-10

0

10

20

30

40

50

60
Im

pr
ov

em
en

t o
f

ex
e

tim
e

(%
)

OnS-GC
OnS-DO-GC
OnS-EO-GC
OnS-RO-GC

co
mpr

es
s

db jac
k

jav
ac

jes
s

mpe
ga

ud
io

mtrt AVG

-15

-10

-5

0

5

Im
pr

ov
em

en
t o

f
ex

e
tim

e
(%

)

OnS-GC
OnS-DO-GC
OnS-EO-GC
OnS-RO-GC

(a) MIN (b) 32MB

Figure 5: Comparison of four variants of online sample-based profile for adaptive configuration

The figure indicates that OnS-DO-GC (delay unloading)
works best for most of benchmarks. This is because this
strategy gives optimized code an extra chance to stay in
the system; in addition, unlike OnS-EO-GC, OnS-DO-GC
exploits opportunities to unload outdated optimized code.
OnS-RO-GC is intended to save the learning time of a hot
method when it is reloaded. However, our results show that
in most cases, this strategy does not work well since many
of hot methods do not remain constantly hot following un-
loading/reloading. For example, method spec.benchmarks.
201 compress.Input Buffer.getbyte() is really hot (invoked
more than 1.5 million times) before it is unloaded at the
first time. Then, due to the phase shift of the application, it
becomes less hot in the following period of execution. How-
ever, it is still invoked periodically: about 10 invocations
between two unloading sessions. Since it is not hot enough
to be recognized by the sampling profiler, it is unloaded
upon every unloading session. Then it is optimized upon
its next invocation because of the RO strategy, which intro-
duces large, unnecessary optimization overhead.

In summary, the average performance improvement (or
degradation), when memory is highly constrained (MIN),
for each of the strategies, is 8.6% for OnS-GC, 10.3% for
OnS-DO-GC, 9.0% for OnS-EO-GC, and 8.5% for OnS-RO-
GC. When resources are unconstrained (32MB), it is -1.0%
for OnS-GC, 0.1% for OnS-DO-GC, -2.7% for OnS-EO-GC,
and -1.8% for OnS-RO-GC.

5.2.2 Adaptivity to heap sizes
We next summarize the improvements enabled by our

techniques in terms of code size and overall performance,
for a range of heap sizes; these results indicate the adap-
tivity of our strategies. We focus on the best-performing
combination of What and When strategies: online, sample-
based profiling using an unloading trigger of GC invocation
count (OnS-GC) for the fast JVM configuration, and OnS-
DO-GC for the adaptive JVM configuration. Figures 6 (for
OnS-GC) and 7 (for OnS-DO-GC) show the results. For
both figures, the x-axis is heap size. The y-axis of the left
graphs in both figures is the average code size normalized to
the clean version; the y-axis of right graphs is the execution
time normalized to the clean version.

Figure 6(a) summarizes the effect of OnS-GC on code size
as the heap size grows from the minimum to 32MB. In this
figure, we can see that when memory is limited, OnS-GC

triggers more aggressive unloading, which results in code
size reductions of 61% on average. When memory availabil-
ity grows, the aggressiveness with which OnS-GC triggers
unloading decreases quickly since fewer garbage collections
are invoked. However, the separate startup strategy guar-
antees that even when memory is not critical, e.g., 32MB,
dead startup code will be unloaded. The code size reduction
using a 32MB heap is 43% on average.

This code size reduction enables significant execution time
benefits while imposing very little overhead. Figure 6(b)
shows the normalized execution time of OnS-GC strategy
for different heap sizes. In this figure, we can see that when
memory is constrained, code unloading can not only reduce
the size of cached code, but also improve execution time by
trading off GC time for compilation overhead. When mem-
ory grows, the execution time improvements gained decrease
quickly because the GC overhead decreases and unloading
becomes unnecessary. These results indicate that our frame-
work and the OnS-GC strategy can adapt to dynamic heap
memory availability.

Similar to Figure 6, Figure 7(a) summarizes the effect
of OnS-DO-GC on code size and (b) depicts its impact on
execution time, for the adaptive JVM configuration. Notice
that for the adaptive configuration, the minimal heap size
that a benchmark can run with is larger than that in fast
configuration due to larger memory requirements for code
optimization. As such, the curves in Figure 7 start from a
larger initial heap size. On average, the code size reduction
achieved by OnS-DO-GC is 43% for minimal heap size and
38% for 32MB; while the performance improvement is 10.3%
and 0.1%, respectively.

6. RELATED WORK
Several code cache management techniques have been pro-

posed in the area of dynamic binary translation [19, 2, 9, 6].
The technique most related to our work is code pitching used
in Microsoft .NET Compact Framework [19]. In this frame-
work, all code in the code buffer is discarded when the buffer
exceeds some threshold. A similar strategy is used in the Dy-
namo [2] dynamic optimizer from HP. In Dynamo, when the
cache fills, all fragments are “flushed” to free up space for
new traces. Code pitching and cache flushing can both be
configured using our NP-CS strategy. This simple strategy
is chosen by these systems due to ease of implementation,
low profiling overhead, or no linking problems. We found,

162

0 4 8 12 16 20 24 28 32

Initial Heap Size (MB)

0.1

0.3

0.5

0.7

0.9

1.1
N

or
m

al
iz

ed
 A

ve
ra

ge
 C

od
e

Si
ze

compress
db
jack
javac
jess
mpeg
mtrt

0 4 8 12 16 20 24 28 32

Initial heap size (MB)

0.1

0.3

0.5

0.7

0.9

1.1

N
om

ai
liz

ed
 E

xe
cu

tio
n

T
im

e compress
db
jack
javac
jess
mpeg
mtrt

(a) (b)

Figure 6: Summary of the improvements of OnS-GC strategy for Fast JVM configuration

0 4 8 12 16 20 24 28 32

Initial Heap Size (MB)

0.1

0.3

0.5

0.7

0.9

1.1

N
or

m
al

iz
ed

 A
ve

ra
ge

 C
od

e
Si

ze

compress
db
jack
javac
jess
mpeg
mtrt

0 4 8 12 16 20 24 28 32

Initial heap size (MB)

0.1

0.3

0.5

0.7

0.9

1.1

N
om

ai
liz

ed
 E

xe
cu

tio
n

T
im

e compress
db
jack
javac
jess
mpeg
mtrt

(a) (b)

Figure 7: Summary of the improvements of OnS-DO-GC strategy for Adaptive JVM configuration

however, that in our target systems (JVMs), where cached
code is commonly method-based, selective unloading of code
using lightweight profiling techniques and a trigger that is
able to adapt to changes in heap memory requirements can
achieve better balance between execution performance and
memory use. We plan to investigate partial method un-
loading, i.e., code region-based unloading, as part of future
work.

Other dynamic binary translation systems use other forms
of cache management. For example, DynamoRIO [6], uses
an unbounded code cache by default. Users, however, can
specify a limit to the code cache, and in this case, Dy-
namoRIO uses a circular buffer mechanism similar to that
proposed in [11]. The DAISY project, a multi-architecture
VLIW emulator from IBM [9], employs a form of gener-
ational garbage collection to manage a large code cache
(100MB or more). Similar generational cache management
mechanism is investigated in [12] using DynamoRIO [6] and
a generational cache simulator. The strategies that we de-
scribe in Section 3.3, e.g., DO and EO, handle optimized
code separately and can be considered simple forms of gen-
erational cache management. We do not investigate other,
more general, generational code cache management and cir-
cular buffer strategies in this paper.

Another related area is code size reduction in JVMs for
restricted resource environments. The HotSpot JVM from
Sun Microsystems [13] limits the size of compiled code by
only compiling the hottest methods and interpreting all oth-
ers. Other work employs profile-driven deferred compilation

or optimization [5, 23] to avoid generating code for cold spots
in the programs. In contrast to their “never cache cold meth-
ods” strategy which may impose large re-interpretation over-
heads, our framework enables a more flexible code caching
strategy which can adapt to system resource status: whether
and how long a method’s code is cached is dynamically de-
termined by the code unloader according to runtime infor-
mation and system memory status. Even in these “never
cache cold methods” systems, code unloading techniques can
also be used to manage “hot” methods.

7. CONCLUSIONS
In this paper, we first discuss the opportunity for dynami-

cally unloading compiled code in JIT-based JVMs for mobile
and embedded devices. We found that, for most benchmarks
that we studied, over 70% (in size) of code is dead after the
initial 10% of execution time, and over 60% of methods are
active for less than 5% of the time that they are managed
by the system. This data indicates that there is much na-
tive code in the system that is consuming memory resources
needlessly. As such, we developed a dynamic code unload-
ing framework that can be integrated into any compile-only
JVM to dynamically and adaptively unload code to relieve
memory pressure in resource-constrained systems. In our
framework, a code unloader uses information about the sys-
tem memory status to determine when to initiate unloading
and utilizes both online and off-line profile information to
select methods for unloading.

163

We implemented our code unloading framework in the
IBM JikesRVM and investigated a number of different un-
loading strategies. Through experimentation using both an
unoptimized JIT configuration and an adaptive optimization
configuration, we found that by adaptively unloading dead
and infrequently used code, we can significantly reduce the
memory consumed for native code. When this code is stored
on a garbage collected heap, these reductions in code size
translate into significant performance improvements when
memory is highly constrained. Overall, our best strategies
enable an average reduction in code size of 43% while in-
troducing less than 1% overhead, when memory is uncon-
strained. When memory is highly constrained, our system
reduces code size by 61% and execution time by 23% on av-
erage across benchmark programs and JVM configurations.

8. ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for pro-

viding useful comments for the final version of this paper.
This work was funded in part by NSF grant No. EHS-0209195,
and an Intel/UCMicro external research grant.

9. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño Virtual
Machine. IBM Systems Journal, 39(1):211–221, 2000.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. ACM
SIGPLAN Notices, 35(5):1–12, 2000.

[3] D. Box. Essential .NET, Volume I: The Common
Language Runtime. Addison Wesley Professional,
November 2002.

[4] G. Bracha, J. Gosling, B. Joy, and G. Steel. The Java
Language Specification. Addison Wesley, second
edition, June 2000.

[5] D. Bruening and E. Duesterwald. Exploring Optimal
Compilation Unit Shapes for an Embedded
Just-In-Time Compiler. In Proceeding of the 2000
ACM Workshop on Feedback-directed and Dynamic
Optimization FDDO-3, December 2000.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
1th Annual International Symposium on Code
Generation and Optimization, pages 265–275, March
2003.

[7] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing
JUDO: Java Under Dynamic Optimizations. In
Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 13–26, June 2000.

[8] Hewlett-Packard Company. ChaiVM.
http://www.chai.hp. com.

[9] K. Ebcioglu, E. R. Altman, M. Gschwind, and S. W.
Sathaye. Dynamic binary translation and
optimization. IEEE Transactions on Computers,
50(6):529–548, 2001.

[10] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and
J. M. Anderson. Quantifying the energy consumption

of a pocket computer and a Java virtual machine. In
Proceedings of ACM International Conference on
Measurement and Modeling of Computer Systems,
June 2000.

[11] K. Hazelwood and M. D. Smith. Code cache
management schemes for dynamic optimizers. In
Workshop on Interaction between Compilers and
Computer Architecture (Interact-6), February 2002.

[12] K. Hazelwood and M. D. Smith. Generational cache
management of code traces in dynamic optimization
systems. In 36th Annual International Symposium on
Microarchitecture, December 2003.

[13] The Java HotSpot Virtual Machine, Technical White
Paper. http://java.sun.com/products/hotspot/docs/
whitepaper/Java HotSpot WP Final 4 30 01.ps.

[14] Sun Microsystem Inc. White paper: Java(TM) 2
Platform Micro Edition(J2ME(TM)) Technology for
Creating Mobile Devices, May 2000.
http://java.sun.com/products/cldc/wp/KVMwp.pdf.

[15] Kaffe – An opensource Java virtual machine.
http://www.transvirtual.com/kaffe.htm.

[16] C. Krintz, D. Grove, V. Sarkar, and B. Calder.
Reducing the Overhead of Dynamic Compilation.
Software-Practice and Experience, 31(8):717–738,
2001.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison Wesley, second edition, April
1999.

[18] SpecJVM’98 Benchmarks. http://www.spec.org/osg/
jvm98.

[19] D. Stutz, T. Neward, and G. Dhilling. Shared Source
CLI Essentials, page 251. O’Reilly Associates, Inc.,
March 2003.

[20] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and
T. Nakatani. Overview of the IBM Java Just-in-Time
Compiler. IBM Systems Journal, 39(1):175–193, 2000.

[21] D. Takahashi. Java chips make a comeback. Red
Herring, July 2001.

[22] N. Vijaykrishnan, M. Kandemir, S. Tomar, S. Kim,
A. Sivasubramaniam, and M. J. Irwin. Energy
Characterization of Java Applications from a Memory
Perspective. In USENIX Java Virtual Machine
Research and Technology Symposium, April 2001.

[23] J. Whaley. Partial Method Compilation using
Dynamic Profile Information. In Proceeding of ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications,
OOPSLA, pages 166–179. ACM Press, October 2001.

[24] L. Zhang and C. Krintz. Profile-driven Code
Unloading for Resource-constrained JVMs. In 3rd
International Conference on the Principles and
Practice of Programming in Java, June 2004.

164

