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ABSTRACT 
CodePack is a code compression sys tem used by IBM in its 
PowerPC family of embedded processors. CodePack com- 
bines high compression capability along with fast and  simple 
decoding hardware. IBM did not release much information 
about  the design of the  system and the influence of various 
design parameters  on its performance. In our work we will 
present the  sys tem and its design parameters  and  investi- 
gate how each affects its performance on the  compression 
rate and decoder complexity. We also present  a novel effi- 
cient algorithm to optimize the  class s t ructure  of the  system.  

K e y w o r d s :  Embedded Systems, CodePack, Code Com- 
pression, Optimization,  Embedded Software 

1. INTRODUCTION 
Driven by an expanding market  for consumer  electronics 

and communicat ions  equipment,  embedded software is be- 
coming increasingly complex [1, 2]. In high-end embedded 
products,  32-bit microprocessor cores provide the  comput-  
ing power needed to run complex algori thms in real-time. 
Timely development of such complex and large embedded 
applications requires the  use of high-level languages and 
compilers instead of manual ly  crafted assembly code. From 
the sys tem point of view, larger applications and compiled 
code are both factors tha t  add up to a requirement for larger 
instruction memory. 

Another  factor is sys tems software. Currently, m a n y  em- 
bedded products  use real-time operating sys tems with mod- 
est memory requirements,  typically in the  range of 10KB 
to 100KB. Embedded versions of Linux and Windows are 
becoming increasingly popular [3] in high-end 32-bit appli- 
cat ions and in products  tha t  do not have t ight  real-t ime 
requirements,  such as set- top boxes and networked game 
consoles. Scaled down versions of Linux or Windows NT 
may require a few megabytes  of memory. 

The  available instruction memory space may be bet ter  
utilized by encoding embedded software in a compact  for- 
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mat.  This  cost effective approach received a lot of at tention 
in recent years. In this paper we present a detailed s tudy  of 
CodePack - the  code compression technology implemented 
in the  IBM PowerPC 405 embedded microprocessor. We 
look at several design parameters  andinves t iga te  their per- 
formance impact. 

1.1 Related Work 
Several approaches have been used to produce compact 

code. T h u m b  [4] and MIPS-16 [5] offer extended instruction 
sets tha t  include short instructions for embedded applica- 
tions. 'The use of short  instructions adds minimal run-t ime 
overhead, but  applications compiled for ARM or MIPS must  
be re-compiled to take advantage of the  extended instruction 
set. A second approach is to reduce the  size of the  compiled 
code by generating a custom instruction set, matched to the 
characteristics of the compiled program [6, 7]. The custom 
instructions are interpreted at a speed slower by a factor of 
2-4 relative to compiler generated code [8], or a tailored de- 
coder may produce the  processor's internal signals directly 
[9L 

The third and final approach we discuss here is to com- 
press embedded instructions while maintaining the  ability to 
quickly decompress them,  with minimal  impact on code ex- 
ecution speed. An important  requirement is random access 
decompression, which can be implemented by modifying the 
embedded microprocessor core to directly access the com- 
pressed instruction memory [10], or by translat ing addresses 
produc.ed by the  processor to addresses in compressed mem- 
ory via a block address t ranslat ion table [11]. The random 
access requirement limits the  choice of compression meth- 
ods. Prefix coding is an obvious choice, but  other compres- 
sion methods  have been also proposed, including ari thmetic 
coding [12], and dictionary compression methods [13, 14]. 

The simplest prefix coding is based on an order-0 (or 
context-free) model. Frequent symbols  are assigned shorter 
codes than  symbols tha t  occur less frequently. An order-1 
fixed-context model uses a single preceding symbol to deter- 
mine the  probability of the  next  symbol. For an alphabet  
of n symbols  an  order-I model requires a codebook of size 
.2.  An interesting compromise implemented in [10] is to 
use a full codebook based on context-free probabilities for 
all symbols, and an additional small  codebook based on the  
order-1 model for selected symbols. 

CodePack, introduced by IBM [15, 16] in 1998, is a prefix 
coding method  used to compress the  embedded instruction 
memory. It takes, however, a different approach for selecting 
the symbol alphabet  and for l imiting the codebook size (see 
Section 2). An evaluation of CodePack [17] provides results 
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on the performance penalty due to the additional delay in- 
curred by decompressing instructions before execution, and 
shows that a performance gain is sometimes achievable be- 
cause compression shortens the transfer time of instruction 
blocks. The research reported in [17] does not consider, 
however, varying CodePack design parameters (such as the 
number of classes and their coding), and does not inves- 
tigate how these design parameters affect the compression 
performance. 

1.2 Paper Overview 
The CodePack compression scheme, its design parame- 

ters, and their effect on compression performance (the Code- 
Pack system also includes provisions for address translation 
- these are not discussed here) is the target of this study. 
We begin in the next section with an overview of CodePack. 
In Section 3 we present an efficient algorithm to determine 
the number of symbols in each class. After describing our 
experimental setup in Section 4, we present the results in 
Section 5. We summarize the work and draw conclusions 
based on it in Section 6. 

2. OVERVIEW OF CODEPACK 
The CodePack compression scheme, replaces a fixed length 

instruction code with a variable length compression code. 
To achieve compression in such a scheme, it is required that 
more probable instructions will be assigned shorter codes 
than less probable instructions. One widely known method 
to build such code is the Huffman method [18]. 

In CodePack, every instruction is fitted into one of N 
groups that  IBM calls classes. Each class has a fixed length 
and is composed of two fields: the first is the prefix - a short, 
variable length code that identifies the class; the second is a 
fixed length (for each class) field called index  that  selects a 
specific instruction out of its class. One more special class 
exists for instructions that are not compressed - literals. 
These instructions are copied after a prefix that identifies 
them. 

The main advantage of the scheme is that  the code length 
is known by decoding only a few bits, so the next code can 
be fetched while the first code is still being decoded. 

When designing a CodePack-like compression system, sev- 
eral design parameters should be considered: 

• N u m b e r  of  classes ( N )  - More classes allow more flexi- 
bility in selecting a proper compressed codeword length 
to instructions according to their probability. How- 
ever, too many classes will require the prefix to have 
more bits - which translate to longer decode time and 
more complex decoder: 

• Codebook size ( D )  - All the instructions that are not 
literals must be stored in a codebook. In order to allow 
fast decompression, the codebook is usually stored in 
a fast memory, near the decompression logic. This 
fact poses severe limit on the size of the codebook. In 
IBM's implementation the codebook is 1842 byte long. 

• Class S tructure  - The class structure defines how many 
symbols are coded in each class. The class structure is 
a function of N and D, and must be built to maximize 
compression rate. 

• Alphabet  - In order to be entropy compressed, the bit- 
stream of the object code must be divided into symbols 

of fixed length. Large alphabets carry more informa- 
tion, but are hard to handle. IBM divides each 32 bit 
instruction into two 16 bit halves, each half is com- 
pressed independently using its own probabilities. 

Statist ical  Method - A statistical method is used to de- 
termine which of the symbols are most likely to occur. 
IBM mentions nothing about this issue. 

3. AN OPTIMIZATION ALGORITHM 
To achieve good compression using the CodePack algo- 

rithm, a key problem that  must be considered is the class 
structure problem - determining the number of symbols in 
each class. It is obvious that  the brute force approach is an 
O(2 N) algorithm (N is the number of classes), so applying 
it for large number of classes is not practical. In this section 
we pr~esent an efficient algorithm to perform this task. 

3.1 Definitions 
Assume we have a message composed of K different sym- 

bols 

= { s ~  ..... SK}. (1) 

Each symbol occurs ffk times in the message, and it is as- 
sumed that  ~ so that fk _> fk+l. We compress it by dividing 
S into N + 1 subsets or classes 

C = {c~ ..... C,~, C~+~}. (2) 

Each class contains cc~ symbols, and must be an integral 
power of two 1, with the possible exception of the last one. 
To encode a symbol that  belongs to class C~ we need a prefix 
to identify the class and an index having log 2 c,  bits. This 
code is actually only a reference to a codebook translating 
the prefix+index pair into a symbol, and the class Ca will re- 
quire a total of c~- B bits in that  codebook (B is the number 
of bits originally used to represent each symbol in E). Pre- 
fix codes, being relatively few, are encoded using some stan- 
dard entropy coding such as Huffman or arithmetic code. 
Said [19] showed that we can separate the problem of prefix 
and index coding ~ so we will concentrate on the index here. 
Finally, the symbols are allocated consecutively - the first 
cz symbols belong to class C1, the next c~ symbols belong 
to class C~, and so on. The last class CN+i is the literal 

-class, which contains all the symbols that  do not belong to 
any other class. Each symbol in the literal class is copied to 
the compressed message as-is, thus requiring B bits in the 
compressed stream (none of them are in the codebook). 

3.2 A l g o r i t h m  Descr ip t ion  
Using the definitions above, we can now define the opti- 

mization problem formally: 

Find  a set {cl, ..., c],:}, which defines a class s tructure,  so 
that when  applied to encode a message  over  ~ ,  shall give the 

shortest  possible compressed code. 

XIn order to prevent unused indices. 
2The proof relies on the assumption that the prefix is ideally 
entropy coded. In the case of Huffman coding, this assump- 
tion does not hold. However, we will continue to use it under 
the assumption that  the prefix coding is "close enough" to 
the ideal. 
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(a) The example graph 
als 

(b) The example graph with weights. The thick line 
is the shorterst path. 40 

(c) The resulting class structure (with prefix) 

C l a s s  1 

C l a s s  2 

Literal[l!l[ I I [ ] 

F i g u r e  1: E x a m p l e  g r a p h  d e s c r i b e d  in S e c t i o n  3.3.  

To solve this  problem we introduce a graph G = (V, A) 
having K +  1 nodes - one node corresponding to each symbol,  
and one additional, final node. 

V = { V k ]  l < k < K + l }  (3) 

The  nodes axe connected by arcs of two types - final and 
non-final. 

A = A NF U A v (4) 

Non-final arcs are defined as: 

A NF = {ai.j I Vi, j ,  K _> j > i 
(5) 

and (j - i) is an integral power of 2} 

Final arcs are defined as: 

A F = { a i d  ]Vi, j ,  j = ( K + I ) }  (6) 

Each arc has a weight: 

I (E{_~, l l ,)  " l og2 ( j - i )  + ( j - i )  " B i f a , j  e A t~F 
wi j  = K B I ~ ,= ,  fi . if a , j  e A F 

(7) 
These definitions assert  tha t  an arc a~,j tha t  extends from 

node i to node j corresponds to a class containing the  sym- 
bols from & ~o Sj-1 .  The  weight of the arc is the  number  

of bits such class would have required in the  compressed 
message. Note tha t  this  weight includes the number  of bits 
required in the  codebook. The arcs tha t  extend from any 
node i to the  final node correspond to a literal class that  
begins at  symbol i. 

The  message is encoded using N + 1 classes (of which 
N are non-literal and one is literal), so its length can be 
expressed as a sum of weights of arcs, s ta r t ing  with the first 
node, passing through N - 1 more nodes and ending at the 
final node (total N + 1 nodes). 

Let us now write the  length (in bits) of the  compressed 
message: 

N + i  

L c (s) 
/ : 1  

l ~- 0 (9) 

The  c,, used in the  last definition are the  length of the 
n ' t h  arc in the path, and are exactly the  values we seek to 
optimize, subject  to the  requirement for min imum weight. 

Optimizat ion can be done using s tandard  method  known 
as successive approximation described in detail in [20]. In 
this  method we s t a r t  by finding the  shortest  path (weight) 
from the first node to each node using one arc only, and 
then  in each l ' th  step we find the  shortest  pa th  using l + 1 
arcs. Usually we will continue the  process until the  absolute 
shortest  pa th  is found, but  in our case we will s top after N + I  
steps. ~A,'e will then have the shortest  pa th  s tar t ing from 
node 1, using N +  1 arcs and ending at the  final node. Each 
arc corresponds to one class and their length is an integral 
power of 2 by definition. The  last arc corresponds to the 
literal class and its length is not constrained. The weight of 
the  path,  which corresponds the length of the  compressed 
message, is minimal. 

3.3 Example 
The  message to be encoded is ACAAACBDCB, using N = 2 

classes. Each symbol is originally represented by B = 4 bits. 
The  frequencies of the  symbols  h,  C, B, D in this message 
are f l  = 4, f2 = 3, f3 = 2, and f4 = 1 respectively. 

The  symbols are listed in non-increasing frequency or- 
der (h, C, B, D,), and represented in Figure 1 by nodes 
V1, V2, Va, P~ respectively. As shown in Figure la,  with the 
exception of the  final arcs, only arcs whose length is a power 
of 2 are included in the  graph. The  weight of each arc, cal- 
culated using equation (7), is shown in Figure lb. 

For the  desired number  of N = 2 classes, the  algorithm 
selects the  optimal pa th  marked with heavy arrows. The 
length of the  arrows in the pa th  determines the  number of 
symbols  in each class. Thus  Class 1 and Class 2 each consists 
of a single symbol. The  final arc represents the remaining 
two symbols, assigned to the  Literal Class. The classes may 
be encoded as in Figure lc. 

In the  Literal class the  4-bit symbol is appended to the 
class code. The compressed message  length is 28 bits instead 
of 40 bits in the original message. 

3.4 Algorithm Summary 
Following are the main steps of the  algorithm. Given 

an alphabet  of K symbols tha t  is to be partit ioned into N 
classes and one additional literal class, the  algorithm selects 
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an optimal class structure (i.e., the number of symbols in 
each class). 

1. Construct a graph that consists of K nodes, one node 
corresponding to each symbol. The nodes are ordered 
in non-increasing symbol frequency order. Add one 
additional, final, node, for a total of K + 1 nodes. 

2. Add to the graph all non-final and final arcs as defined 
by equations (5) and (6). 

3. Mark each arc with its weight as defined by equation 
(7). 

4. Using successive approximation, determine the opti- 
mal (minimal weight) path starting at node 1, ending 
at the final node, and having exactly N + 1 arcs. The 
optimal path defines the desired class structure. 

3.5 Codebook Limit 
As mentioned earlier, the cost of the codebook is high in 

terms of chip space, so we might be interested in limiting its 
size. 

The algorithm, by its essence, selects an optimal set of 
arcs out of some final set of arcs,which define all the pos- 
sible options. To prevent selection of options that  are not 
desired, we have to remove the arcs that  represent them. 
Let us remember that a final arc defines the literal group, 
that  is, all the nodes (symbols) that are copied as-they-are 
and do not require codebook space. A final arc a#,g+l in 
the optimal path means that all the symbols which are rep- 
resented by the nodes V~, i _> j will be literals. By deleting 
all the arcs a~,j, i > D we assure that the optimal path will 
include a final arc starting at VD at most. thus implementing 
a codebook limit of D symbols (D .  B bits). 

3.6 Implementation 
The implementation starts with the definition of three ar- 

rays: :f[k] which holds fk; u[1] is the shortest path from 
the first node to the l'th node; and t r a c e [ 1 , j ]  is the num- 
ber of node through which the shortest path to node j in the 
l ' t  step passes. We initialize u[1] with the Wl,l according to 
(7) which is the shortest path from the first node to the l'th 
node using one step only. If there is no arc between V1 and 
V~, u[1] should be given "infinite" value (in practice HAXINT 
can be used). 

Next, we run the following loop: 

:for 1--2 to N+I 
got j=2 to K 

for i=2 "to K 
u [ j ]  '¢= min(u[ i ]+  w~,:) 
~ r a c e [ 1 , j ]  ~= i for which u [ j ]  is minimal 

After completing, u[K+l] will be the value of the shortest 
path (which is the length of the compressed message without 
the prefixes), t r a c e [ 1 , j ]  can help us recover the nodes 
through which that path has passed and that will give us 
the class structure. 

3.7 Complexity 
From the analysis of the algorithm given in Section 3.2, 

we can simply derive that the time complexity of the algo- 
r i thm is O(N . K2). Inspecting carefully the structure of 
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Figure 2:  Compression versus the number of classes, 
without codebook limit. 

the arcs in the graph, we find that the number of arcs going 
into node Vk is at most log 2 K, so by removing unnecessary 
comparisons from the inside of the loop, the time complexity 
can be reduced even further to O(N.  log 2 K .  K). 

The space complexity is limited by the size of the t r a c e  
array, and it is approximately O(N.  K).  

4. EXPERIMENTAL DESIGN 
All our tests were performed on 25 files taken from the 

SPEC2000 benchmark suite and compiled for Alpha AXP 
21264 [21]. From each object file, the instruction part (. t e x t  
section) was extracted and converted to plain binary form, 
on which our tests where performed. 

For each file we built an optimal class structure using each 
model and the tested parameter set, and then calculated the 
compressed code size and compression ration. It must be 
noted here, that  in the CodePack system there is a single 
class structure that serves all the code to be compressed. 
This fact may lead to slightly lower compression ratios on a 
real system than described here. 

5. RESULTS 

5.1 Number of classes 
The first parameter we checked is the number of classes 

vs. compression ratio. The results are shown in figure 2. 
From the graph it is clearly seen that  allowing to have more 
classes improves the compression ratio, until a certain limit 
from which more classes have nearly no effect. The limit is 
in the region of 8 classes. The results shown here were done 
without codebook limit. 

5.2 Codebook Size 
We now want to check the effect of codebook limit on 

attainable compression. N is fixed on 8 and the codebook 
limit start  from 64 to 16K symbols. Figure 3 shows the 
result. The dashed line shows the compression ratio without 
codebook limit. Using bigger codebook can result in better 
compression ration, but doubtfully many applications can 
allow codebooks of a few kilobytes. We used N = 8 in this 
test. 
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F i g u r e  4: C o m p r e s s i o n  v e r s u s  t h e  n u m b e r  o f  c lasses  
for  s e v e r a l  c o d e b o o k  s izes  (D) .  

Figure 4 shows the effect of both N and D on a single grid. 
It is clear from that figure that increasing the codebook limit 
has greater effect on compression than adding more classes. 

5.3 Alphabet 
The alphabet model is the way the instruction bitstream 

is divided into symbols to allow probabilistic properties ex- 
traction. We tried several alphabet models which are listed 
below. 

• M o d e l  1 - The first model is the model used by the 
original CodePack. Every 32 bit instruction is divided 
into two 16-bit symbols, and statistics is calculated on 
each part independentl)t Then, an optimal class struc- 
ture is obtained for each part and the code is being 
compressed. The parameters used here were N -- 10 
(IBM uses N = 6) and D = 512 symbols for each part. 

• M o d e l  2 - In model 2, the division to two halves is elim- 
inated. The bitstream is divided into 32-bit symbols 
and a probability is attached to each symbol. Then, 
the optimal class structure is determined and the com- 
pression rate is calculated. The parameters used here 
are N = 10 and D = 1024 symbols. 
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Model l Model 2 Model 3 Model 3a ZIP 

F i g u r e  5: A l p h a b e t  Mode l s .  Mode l  1 is C o d e P a c k .  
Z I P  is inc luded  for  re fe rence .  T h e  r e m a i n i n g  m o d e l s  
a r e  def ined in t h e  t ex t .  

This model can be implemented to be faster than the 
previous model, since only one step is required to ob- 
tain a 32-bit instruction symbol, rather than two steps 
in the previous model. 

• M o d e l  3 ,  3 a  - In this model, we have tried to improve 
IBM's method by coding a few of the most probable 
32-bit instruction as a whole, while the rest are coded 
as two 16-bit halves, as in the original scheme. We 
must introduce here a new design parameter F, the 
number of instructions coded as 32-bit symbols. Each 
of these instructions is coded as a single item class, i.e. 
prefix only. Model 3a is similar, except for the way the 
16-bit part probabilities are calculated. In this model, 
a single probability table is calculated for both the low 
part and the high part, and a single decoder is used 
for both parts. 

A decoder for this model may be slightly more complex 
than the decoder for IBM's model, since it has to deal 
with variable length output symbols. 

Figure 5 shows the results for the different models. Model 
1 - which was used by IBM in their system - provides the 
best compression rate of all the models tested. Also shown 
on the graph is the code compressed by the commercial com- 
pression utility ZIP. This number is given as a reference• 

5.4 Literal Compression 
In the original CodePack scheme, the literals are copied 

and not compressed, using actually more bits than used by 
that  symbol in the uncompressed stream. We have tried to 
improve this situation by compressing them. Each literal is 
divided into 4 nibbles (4 bit) which were Huffman encoded 
(using a single encoder for the whole file). 

Figure 6 shows the results. Two alphabet models were 
used - model 1 and model 3a as described in the previous 
section. 

The decoder for these models will be more complex be- 
cause it has to deal with the decompression of the literals. 
Its performance may suffer severely, since the main advan- 
tage of the original CodePack scheme - knowing the com- 
pressed symbol length before completely decoding it - is 
lost. 
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F i g u r e  6: Li t e r a l  C o m p r e s s i o n .  T w o  o f  t h e  m o d -  
els  w i t h  t h e  l i t e ra l s  n o t  c o m p r e s s e d  ( M o d e l  1 
a n d  M o d e l  3a )  a n d  w i t h  H u f f m a n  e n c o d e d  l i t e ra l s  
( M o d e l  1--FLC a n d  M o d e l  3a-.FLC). 

6. CONCLUSIONS 
The main advantage of class-based coding is that  the code 

length is known by decoding only a few bits. This provides 
both simple decoding and good performance because several 
symbols may be decoded in parallel. To design class-based 
coding, one must partition the symbol alphabet into classes, 
according to the symbol frequencies. We have introduced an 
algorithm that  selects an optimal class structure for a given 
number of classes. The algorithm complexity is O(N-log 2 K.  
K) for N classes and K symbols. 

Using the new algorithm, we have compared the compres- 
sion performance of several alphabet models as a function of 
the number of classes and the codebook size. For all code- 
book sizes, the compression ratio flattens out after N = 10 
classes. From the models and parameter sets we tested, the 
IBM CodePack model gives good compression rates while 
retaining simplicity. It is possible to improve the compres- 
sion rates slightly, but the cost in hardware complexity and 
performance loss might be considerable. 

As for future work, in the algorithm described here we 
have given equal weight to storage bits needed for the com- 
pressed message and for the codebook. In practice, the code- 
book is likely to be stored in high-speed ROM, while the 
compressed program might be stored in slower but denser 
flash memory. An extension of this work would be to study 
the impact of different memory technologies for codebook 
and program storage. 
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