
A Study of CodePack: Optimizing Embedded Code Space

Avishay Orpaz and Shlomo Weiss
EE-Systems, Tel Aviv University

Tel Aviv 69978, ISRAEL

ABSTRACT
CodePack is a code compression sys tem used by IBM in its
PowerPC family of embedded processors. CodePack com-
bines high compression capability along with fast and simple
decoding hardware. IBM did not release much information
about the design of the system and the influence of various
design parameters on its performance. In our work we will
present the sys tem and its design parameters and investi-
gate how each affects its performance on the compression
rate and decoder complexity. We also present a novel effi-
cient algorithm to optimize the class s t ructure of the system.

K e y w o r d s : Embedded Systems, CodePack, Code Com-
pression, Optimization, Embedded Software

1. INTRODUCTION
Driven by an expanding market for consumer electronics

and communicat ions equipment, embedded software is be-
coming increasingly complex [1, 2]. In high-end embedded
products, 32-bit microprocessor cores provide the comput-
ing power needed to run complex algori thms in real-time.
Timely development of such complex and large embedded
applications requires the use of high-level languages and
compilers instead of manual ly crafted assembly code. From
the sys tem point of view, larger applications and compiled
code are both factors tha t add up to a requirement for larger
instruction memory.

Another factor is sys tems software. Currently, m a n y em-
bedded products use real-time operating sys tems with mod-
est memory requirements, typically in the range of 10KB
to 100KB. Embedded versions of Linux and Windows are
becoming increasingly popular [3] in high-end 32-bit appli-
cat ions and in products tha t do not have t ight real-t ime
requirements, such as set- top boxes and networked game
consoles. Scaled down versions of Linux or Windows NT
may require a few megabytes of memory.

The available instruction memory space may be bet ter
utilized by encoding embedded software in a compact for-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES'02, May 6-8, 2002, Estes Park, Colorado, USA.
Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

mat. This cost effective approach received a lot of at tention
in recent years. In this paper we present a detailed s tudy of
CodePack - the code compression technology implemented
in the IBM PowerPC 405 embedded microprocessor. We
look at several design parameters andinves t iga te their per-
formance impact.

1.1 Related Work
Several approaches have been used to produce compact

code. T h u m b [4] and MIPS-16 [5] offer extended instruction
sets tha t include short instructions for embedded applica-
tions. 'The use of short instructions adds minimal run-t ime
overhead, but applications compiled for ARM or MIPS must
be re-compiled to take advantage of the extended instruction
set. A second approach is to reduce the size of the compiled
code by generating a custom instruction set, matched to the
characteristics of the compiled program [6, 7]. The custom
instructions are interpreted at a speed slower by a factor of
2-4 relative to compiler generated code [8], or a tailored de-
coder may produce the processor's internal signals directly
[9L

The third and final approach we discuss here is to com-
press embedded instructions while maintaining the ability to
quickly decompress them, with minimal impact on code ex-
ecution speed. An important requirement is random access
decompression, which can be implemented by modifying the
embedded microprocessor core to directly access the com-
pressed instruction memory [10], or by translat ing addresses
produc.ed by the processor to addresses in compressed mem-
ory via a block address t ranslat ion table [11]. The random
access requirement limits the choice of compression meth-
ods. Prefix coding is an obvious choice, but other compres-
sion methods have been also proposed, including ari thmetic
coding [12], and dictionary compression methods [13, 14].

The simplest prefix coding is based on an order-0 (or
context-free) model. Frequent symbols are assigned shorter
codes than symbols tha t occur less frequently. An order-1
fixed-context model uses a single preceding symbol to deter-
mine the probability of the next symbol. For an alphabet
of n symbols an order-I model requires a codebook of size
.2. An interesting compromise implemented in [10] is to
use a full codebook based on context-free probabilities for
all symbols, and an additional small codebook based on the
order-1 model for selected symbols.

CodePack, introduced by IBM [15, 16] in 1998, is a prefix
coding method used to compress the embedded instruction
memory. It takes, however, a different approach for selecting
the symbol alphabet and for l imiting the codebook size (see
Section 2). An evaluation of CodePack [17] provides results

103

on the performance penalty due to the additional delay in-
curred by decompressing instructions before execution, and
shows that a performance gain is sometimes achievable be-
cause compression shortens the transfer time of instruction
blocks. The research reported in [17] does not consider,
however, varying CodePack design parameters (such as the
number of classes and their coding), and does not inves-
tigate how these design parameters affect the compression
performance.

1.2 Paper Overview
The CodePack compression scheme, its design parame-

ters, and their effect on compression performance (the Code-
Pack system also includes provisions for address translation
- these are not discussed here) is the target of this study.
We begin in the next section with an overview of CodePack.
In Section 3 we present an efficient algorithm to determine
the number of symbols in each class. After describing our
experimental setup in Section 4, we present the results in
Section 5. We summarize the work and draw conclusions
based on it in Section 6.

2. OVERVIEW OF CODEPACK
The CodePack compression scheme, replaces a fixed length

instruction code with a variable length compression code.
To achieve compression in such a scheme, it is required that
more probable instructions will be assigned shorter codes
than less probable instructions. One widely known method
to build such code is the Huffman method [18].

In CodePack, every instruction is fitted into one of N
groups that IBM calls classes. Each class has a fixed length
and is composed of two fields: the first is the prefix - a short,
variable length code that identifies the class; the second is a
fixed length (for each class) field called index that selects a
specific instruction out of its class. One more special class
exists for instructions that are not compressed - literals.
These instructions are copied after a prefix that identifies
them.

The main advantage of the scheme is that the code length
is known by decoding only a few bits, so the next code can
be fetched while the first code is still being decoded.

When designing a CodePack-like compression system, sev-
eral design parameters should be considered:

• N u m b e r of classes (N) - More classes allow more flexi-
bility in selecting a proper compressed codeword length
to instructions according to their probability. How-
ever, too many classes will require the prefix to have
more bits - which translate to longer decode time and
more complex decoder:

• Codebook size (D) - All the instructions that are not
literals must be stored in a codebook. In order to allow
fast decompression, the codebook is usually stored in
a fast memory, near the decompression logic. This
fact poses severe limit on the size of the codebook. In
IBM's implementation the codebook is 1842 byte long.

• Class S tructure - The class structure defines how many
symbols are coded in each class. The class structure is
a function of N and D, and must be built to maximize
compression rate.

• Alphabet - In order to be entropy compressed, the bit-
stream of the object code must be divided into symbols

of fixed length. Large alphabets carry more informa-
tion, but are hard to handle. IBM divides each 32 bit
instruction into two 16 bit halves, each half is com-
pressed independently using its own probabilities.

Statist ical Method - A statistical method is used to de-
termine which of the symbols are most likely to occur.
IBM mentions nothing about this issue.

3. AN OPTIMIZATION ALGORITHM
To achieve good compression using the CodePack algo-

rithm, a key problem that must be considered is the class
structure problem - determining the number of symbols in
each class. It is obvious that the brute force approach is an
O(2 N) algorithm (N is the number of classes), so applying
it for large number of classes is not practical. In this section
we pr~esent an efficient algorithm to perform this task.

3.1 Definitions
Assume we have a message composed of K different sym-

bols

= { s ~ SK}. (1)

Each symbol occurs ffk times in the message, and it is as-
sumed that ~ so that fk _> fk+l. We compress it by dividing
S into N + 1 subsets or classes

C = {c~ C,~, C~+~}. (2)

Each class contains cc~ symbols, and must be an integral
power of two 1, with the possible exception of the last one.
To encode a symbol that belongs to class C~ we need a prefix
to identify the class and an index having log 2 c, bits. This
code is actually only a reference to a codebook translating
the prefix+index pair into a symbol, and the class Ca will re-
quire a total of c~- B bits in that codebook (B is the number
of bits originally used to represent each symbol in E). Pre-
fix codes, being relatively few, are encoded using some stan-
dard entropy coding such as Huffman or arithmetic code.
Said [19] showed that we can separate the problem of prefix
and index coding ~ so we will concentrate on the index here.
Finally, the symbols are allocated consecutively - the first
cz symbols belong to class C1, the next c~ symbols belong
to class C~, and so on. The last class CN+i is the literal

-class, which contains all the symbols that do not belong to
any other class. Each symbol in the literal class is copied to
the compressed message as-is, thus requiring B bits in the
compressed stream (none of them are in the codebook).

3.2 A l g o r i t h m Descr ip t ion
Using the definitions above, we can now define the opti-

mization problem formally:

Find a set {cl, ..., c],:}, which defines a class s tructure, so
that when applied to encode a message over ~ , shall give the

shortest possible compressed code.

XIn order to prevent unused indices.
2The proof relies on the assumption that the prefix is ideally
entropy coded. In the case of Huffman coding, this assump-
tion does not hold. However, we will continue to use it under
the assumption that the prefix coding is "close enough" to
the ideal.

104

(a) The example graph
als

(b) The example graph with weights. The thick line
is the shorterst path. 40

(c) The resulting class structure (with prefix)

C l a s s 1

C l a s s 2

Literal[l!l[I I []

F i g u r e 1: E x a m p l e g r a p h d e s c r i b e d in S e c t i o n 3.3.

To solve this problem we introduce a graph G = (V, A)
having K + 1 nodes - one node corresponding to each symbol,
and one additional, final node.

V = { V k] l < k < K + l } (3)

The nodes axe connected by arcs of two types - final and
non-final.

A = A NF U A v (4)

Non-final arcs are defined as:

A NF = {ai.j I Vi, j , K _> j > i
(5)

and (j - i) is an integral power of 2}

Final arcs are defined as:

A F = { a i d]Vi, j , j = (K + I) } (6)

Each arc has a weight:

I (E{_~, l l ,) " l og2 (j - i) + (j - i) " B i f a , j e A t~F
wi j = K B I ~ ,= , fi . if a , j e A F

(7)
These definitions assert tha t an arc a~,j tha t extends from

node i to node j corresponds to a class containing the sym-
bols from & ~o Sj-1 . The weight of the arc is the number

of bits such class would have required in the compressed
message. Note tha t this weight includes the number of bits
required in the codebook. The arcs tha t extend from any
node i to the final node correspond to a literal class that
begins at symbol i.

The message is encoded using N + 1 classes (of which
N are non-literal and one is literal), so its length can be
expressed as a sum of weights of arcs, s ta r t ing with the first
node, passing through N - 1 more nodes and ending at the
final node (total N + 1 nodes).

Let us now write the length (in bits) of the compressed
message:

N + i

L c (s)
/ : 1

l ~- 0 (9)

The c,, used in the last definition are the length of the
n ' t h arc in the path, and are exactly the values we seek to
optimize, subject to the requirement for min imum weight.

Optimizat ion can be done using s tandard method known
as successive approximation described in detail in [20]. In
this method we s t a r t by finding the shortest path (weight)
from the first node to each node using one arc only, and
then in each l ' th step we find the shortest pa th using l + 1
arcs. Usually we will continue the process until the absolute
shortest pa th is found, but in our case we will s top after N + I
steps. ~A,'e will then have the shortest pa th s tar t ing from
node 1, using N + 1 arcs and ending at the final node. Each
arc corresponds to one class and their length is an integral
power of 2 by definition. The last arc corresponds to the
literal class and its length is not constrained. The weight of
the path, which corresponds the length of the compressed
message, is minimal.

3.3 Example
The message to be encoded is ACAAACBDCB, using N = 2

classes. Each symbol is originally represented by B = 4 bits.
The frequencies of the symbols h, C, B, D in this message
are f l = 4, f2 = 3, f3 = 2, and f4 = 1 respectively.

The symbols are listed in non-increasing frequency or-
der (h, C, B, D,), and represented in Figure 1 by nodes
V1, V2, Va, P~ respectively. As shown in Figure la, with the
exception of the final arcs, only arcs whose length is a power
of 2 are included in the graph. The weight of each arc, cal-
culated using equation (7), is shown in Figure lb.

For the desired number of N = 2 classes, the algorithm
selects the optimal pa th marked with heavy arrows. The
length of the arrows in the pa th determines the number of
symbols in each class. Thus Class 1 and Class 2 each consists
of a single symbol. The final arc represents the remaining
two symbols, assigned to the Literal Class. The classes may
be encoded as in Figure lc.

In the Literal class the 4-bit symbol is appended to the
class code. The compressed message length is 28 bits instead
of 40 bits in the original message.

3.4 Algorithm Summary
Following are the main steps of the algorithm. Given

an alphabet of K symbols tha t is to be partit ioned into N
classes and one additional literal class, the algorithm selects

105

an optimal class structure (i.e., the number of symbols in
each class).

1. Construct a graph that consists of K nodes, one node
corresponding to each symbol. The nodes are ordered
in non-increasing symbol frequency order. Add one
additional, final, node, for a total of K + 1 nodes.

2. Add to the graph all non-final and final arcs as defined
by equations (5) and (6).

3. Mark each arc with its weight as defined by equation
(7).

4. Using successive approximation, determine the opti-
mal (minimal weight) path starting at node 1, ending
at the final node, and having exactly N + 1 arcs. The
optimal path defines the desired class structure.

3.5 Codebook Limit
As mentioned earlier, the cost of the codebook is high in

terms of chip space, so we might be interested in limiting its
size.

The algorithm, by its essence, selects an optimal set of
arcs out of some final set of arcs,which define all the pos-
sible options. To prevent selection of options that are not
desired, we have to remove the arcs that represent them.
Let us remember that a final arc defines the literal group,
that is, all the nodes (symbols) that are copied as-they-are
and do not require codebook space. A final arc a#,g+l in
the optimal path means that all the symbols which are rep-
resented by the nodes V~, i _> j will be literals. By deleting
all the arcs a~,j, i > D we assure that the optimal path will
include a final arc starting at VD at most. thus implementing
a codebook limit of D symbols (D . B bits).

3.6 Implementation
The implementation starts with the definition of three ar-

rays: :f[k] which holds fk; u[1] is the shortest path from
the first node to the l'th node; and t r a c e [1 , j] is the num-
ber of node through which the shortest path to node j in the
l ' t step passes. We initialize u[1] with the Wl,l according to
(7) which is the shortest path from the first node to the l'th
node using one step only. If there is no arc between V1 and
V~, u[1] should be given "infinite" value (in practice HAXINT
can be used).

Next, we run the following loop:

:for 1--2 to N+I
got j=2 to K

for i=2 "to K
u [j] '¢= min(u[i]+ w~,:)
~ r a c e [1 , j] ~= i for which u [j] is minimal

After completing, u[K+l] will be the value of the shortest
path (which is the length of the compressed message without
the prefixes), t r a c e [1 , j] can help us recover the nodes
through which that path has passed and that will give us
the class structure.

3.7 Complexity
From the analysis of the algorithm given in Section 3.2,

we can simply derive that the time complexity of the algo-
r i thm is O(N . K2). Inspecting carefully the structure of

85

~ 8O
g

7 5 - -

70
~ o

65

. _ ~

. [

I

6O
10 20 30 40

Numbcr of Classcs
.

i

50 60

Figure 2: Compression versus the number of classes,
without codebook limit.

the arcs in the graph, we find that the number of arcs going
into node Vk is at most log 2 K, so by removing unnecessary
comparisons from the inside of the loop, the time complexity
can be reduced even further to O(N. log 2 K . K).

The space complexity is limited by the size of the t r a c e
array, and it is approximately O(N. K).

4. EXPERIMENTAL DESIGN
All our tests were performed on 25 files taken from the

SPEC2000 benchmark suite and compiled for Alpha AXP
21264 [21]. From each object file, the instruction part (. t e x t
section) was extracted and converted to plain binary form,
on which our tests where performed.

For each file we built an optimal class structure using each
model and the tested parameter set, and then calculated the
compressed code size and compression ration. It must be
noted here, that in the CodePack system there is a single
class structure that serves all the code to be compressed.
This fact may lead to slightly lower compression ratios on a
real system than described here.

5. RESULTS

5.1 Number of classes
The first parameter we checked is the number of classes

vs. compression ratio. The results are shown in figure 2.
From the graph it is clearly seen that allowing to have more
classes improves the compression ratio, until a certain limit
from which more classes have nearly no effect. The limit is
in the region of 8 classes. The results shown here were done
without codebook limit.

5.2 Codebook Size
We now want to check the effect of codebook limit on

attainable compression. N is fixed on 8 and the codebook
limit start from 64 to 16K symbols. Figure 3 shows the
result. The dashed line shows the compression ratio without
codebook limit. Using bigger codebook can result in better
compression ration, but doubtfully many applications can
allow codebooks of a few kilobytes. We used N = 8 in this
test.

106

85.

8o

75

"~ 70,

~ 65

60

0 4096 8192 12288 16384

Dictionary Size [words]

F i g u r e 3: C o m p r e s s i o n v e r s u s e o d e b o o k size for N =
8 c lasses .

85

X. _ i Z 80
..q

75
._~
~ 70

~ 65

60

l 0 20 30 40 50

Number of Classes

60

D M 2 8 - " - D = 1 0 2 4 • D = 4 0 9 6 • U N L I M I T E D {

F i g u r e 4: C o m p r e s s i o n v e r s u s t h e n u m b e r o f c lasses
for s e v e r a l c o d e b o o k s izes (D) .

Figure 4 shows the effect of both N and D on a single grid.
It is clear from that figure that increasing the codebook limit
has greater effect on compression than adding more classes.

5.3 Alphabet
The alphabet model is the way the instruction bitstream

is divided into symbols to allow probabilistic properties ex-
traction. We tried several alphabet models which are listed
below.

• M o d e l 1 - The first model is the model used by the
original CodePack. Every 32 bit instruction is divided
into two 16-bit symbols, and statistics is calculated on
each part independentl)t Then, an optimal class struc-
ture is obtained for each part and the code is being
compressed. The parameters used here were N -- 10
(IBM uses N = 6) and D = 512 symbols for each part.

• M o d e l 2 - In model 2, the division to two halves is elim-
inated. The bitstream is divided into 32-bit symbols
and a probability is attached to each symbol. Then,
the optimal class structure is determined and the com-
pression rate is calculated. The parameters used here
are N = 10 and D = 1024 symbols.

100 -] : 90]
~ 80
"~ 70 - ,

6 0 - !

{ _ _ _ . 50 - - l ' ' - ~ - .

I
o 4 0 " " '

c :

0

Model l Model 2 Model 3 Model 3a ZIP

F i g u r e 5: A l p h a b e t Mode l s . Mode l 1 is C o d e P a c k .
Z I P is inc luded for re fe rence . T h e r e m a i n i n g m o d e l s
a r e def ined in t h e t ex t .

This model can be implemented to be faster than the
previous model, since only one step is required to ob-
tain a 32-bit instruction symbol, rather than two steps
in the previous model.

• M o d e l 3 , 3 a - In this model, we have tried to improve
IBM's method by coding a few of the most probable
32-bit instruction as a whole, while the rest are coded
as two 16-bit halves, as in the original scheme. We
must introduce here a new design parameter F, the
number of instructions coded as 32-bit symbols. Each
of these instructions is coded as a single item class, i.e.
prefix only. Model 3a is similar, except for the way the
16-bit part probabilities are calculated. In this model,
a single probability table is calculated for both the low
part and the high part, and a single decoder is used
for both parts.

A decoder for this model may be slightly more complex
than the decoder for IBM's model, since it has to deal
with variable length output symbols.

Figure 5 shows the results for the different models. Model
1 - which was used by IBM in their system - provides the
best compression rate of all the models tested. Also shown
on the graph is the code compressed by the commercial com-
pression utility ZIP. This number is given as a reference•

5.4 Literal Compression
In the original CodePack scheme, the literals are copied

and not compressed, using actually more bits than used by
that symbol in the uncompressed stream. We have tried to
improve this situation by compressing them. Each literal is
divided into 4 nibbles (4 bit) which were Huffman encoded
(using a single encoder for the whole file).

Figure 6 shows the results. Two alphabet models were
used - model 1 and model 3a as described in the previous
section.

The decoder for these models will be more complex be-
cause it has to deal with the decompression of the literals.
Its performance may suffer severely, since the main advan-
tage of the original CodePack scheme - knowing the com-
pressed symbol length before completely decoding it - is
lost.

107

70 ~ .

~., 60..

50~

._~ 40 ° - -

E 30,

~ 2o,-- i
lO, ,

0
Model l Modcl 3a+LC

i

Modcl I+LC Model 3a

F i g u r e 6: Li t e r a l C o m p r e s s i o n . T w o o f t h e m o d -
els w i t h t h e l i t e ra l s n o t c o m p r e s s e d (M o d e l 1
a n d M o d e l 3a) a n d w i t h H u f f m a n e n c o d e d l i t e ra l s
(M o d e l 1--FLC a n d M o d e l 3a-.FLC).

6. CONCLUSIONS
The main advantage of class-based coding is that the code

length is known by decoding only a few bits. This provides
both simple decoding and good performance because several
symbols may be decoded in parallel. To design class-based
coding, one must partition the symbol alphabet into classes,
according to the symbol frequencies. We have introduced an
algorithm that selects an optimal class structure for a given
number of classes. The algorithm complexity is O(N-log 2 K.
K) for N classes and K symbols.

Using the new algorithm, we have compared the compres-
sion performance of several alphabet models as a function of
the number of classes and the codebook size. For all code-
book sizes, the compression ratio flattens out after N = 10
classes. From the models and parameter sets we tested, the
IBM CodePack model gives good compression rates while
retaining simplicity. It is possible to improve the compres-
sion rates slightly, but the cost in hardware complexity and
performance loss might be considerable.

As for future work, in the algorithm described here we
have given equal weight to storage bits needed for the com-
pressed message and for the codebook. In practice, the code-
book is likely to be stored in high-speed ROM, while the
compressed program might be stored in slower but denser
flash memory. An extension of this work would be to study
the impact of different memory technologies for codebook
and program storage.

7. REFERENCES
[1] A.C. Lear. Shedding light on embedded systems. IEEE

Software, 16(1):122-I25, January/February 1999.
[2] E.A. Lee. Wha t ' s ahead for embedded software? IEEE

Computer, 33(9):18-26, September 2000.
[3] B. Santo. Embedded battle royale. IEEE Spectrum,

38(12):36-41~ December 2001.
[4] J.L. Turley. Thumb squeezes ARM code size.

Microprocessor Report, 9(4), March 1995.
[5] K. Kissell. MIPS16: High-density MIPS for the

Embedded Market. Silicon Graphics MIPS Group,
1997.

[6] M. Franz and T. Kistler. Slim binaries.
Communications of the ACM, 40(12):87-94, 1997.

[7] J. Hoogerbrugge, L. Augusteijn, J. Trum, and
R. van de Wiel• A code compression system based on
pipelined interpreters. Software - Practice and
Experience, 29(11):1005-1023, 1999.

[8] C.W. Fraser and T.A. Proebsting. Finite-state code
generation. In Proc. Conf. on Programming Languages
Design and Implementation, pages 270-280, May 1999.

[9] S.Y. Latin and T.M. Conte. Compiler-driven cached
code compression schemes for embedded ILP
processors. In Proe. Int'l Syrup. on Microarchitecture,
pages 82-92, November 1999.

[10] A. Miretsky, A. Ben-Efraim, V. Sukonik, A. Saper,
A. Ginsberg, R. Natan, and A. Dor. RISC code
compression model. In Proc. Embedded Systems
Conference, Chicago, Illinois, March 1999.

[11] A. Wolfe and A. Chanin. Executing compressed
programs on an embedded RISC architecture. In Proc.
lnt'l Symp. on Microarchitecture, pages 81-91, 1992.

[12] H. Lekatsas and W. Wolf. Random access
decompression using binary arithmetic coding. In
Proc. Data Compression Conference, pages 306--315,
March 1999.

[13] S. Liao, S. Devadas, and K. Keutzer. A text
compression based method for code size minimization
in embedded systems. A CM Transactions on Design
Automation of Electronic Systems, 4(1):12-38,
January 1999.

[14] G. Aradjo, P. Centoducatte, R. Azevedo, and
R. Pannain. Expression tree based algorithms for code
compression on embedded RISC architectures. IEEE
Transactions on VLSI Systems, 8(5):530--533, October
2000.

[15] J.L. Turley. PowerPC adopts code compression.
Microprocessor Report, 12(14):26-29, Oct 1998.

[16] M. Game and A. Booker. CodePack: Code
Compression for PowerPC Processors• International
Business Machines (IBM) Corporation, 1998.

[17] C. Lefurgy, E. Piccininni, and T. Mudge. Evaluation
of a high-performance code compression method. In
Proc. Int'l Syrup. on Microarehiteeture. pages 93-102,
Haifa, Israel, November 1999.

[18] D.A. Huffman. A method for the construction of
minimum redundancy codes. Proc. IRE,
40(9):1098-1101, September 1952.

[t91 A. Said and W.A. Pearlman. Low-complexity
waveform coding via alphabet and sample-set
partitioning. In Visual Communications and Image
Processing 'g7, Proc. SPIE VoL 3024, pages 25-37,
Feb. 1997.

[20] E.L. Lawler. Combinatorial Optimization. Holt,
Rinehart and Winstone, July 1976.

[21] C.T. Weaver. Spec 2000 Binaries.
www.eecs.umich.edu/-chriswea/benchmarks/spec2OOO.html.

108

