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ABSTRACT 
Code compression has been shown to be an effective technique to 
reduce code size in memory constrained embedded systems. It has 
also been used as a way to increase cache hit ratio, thus reducing 
power consumption and improving performance. This paper 
proposes an approach to mix static/dynamic instruction profiling 
in dictionary construction, so as to best exploit trade-offs in 
compression ratio/performance. Compressed instructions are 
stored as variable-size indices into fixed-size codewords, 
eliminating compressed code misalignments. Experimental results, 
using the Leon (SPARCv8) processor and a program mix from 
MiBench and Mediabench, show that our approach halves the 
number of cache accesses and power consumption while produces 
compression ratios as low as 56%. 

Categories and Subject Descriptors 
B.3 [Hardware]: Memory Structures; C.3 [Special 
Purpose and Aplication Based Systems]: Real-time and 
Embedded systems. 

General Terms 
Performance, Design. 

Keywords 
Code compression, compression, code density. 

1. INTRODUCTION 
Embedded computing has been moving toward sophisticated 

high end systems. As a result, embedded programs are becoming 
larger, often requiring high-performance processors to meet 
performance constraints. RISC processors have been traditionally 
used to integrate the core computational unit of high-end 
embedded systems. However, memory area is one of the most 
constrained resources in embedded systems and code density is 
not RISC best feature. 

One of the possible solutions to squeeze code is the usage of 

code compression. Unfortunately, special program requirements 
like the possibility of starting decompressing at any point in the 
code (or at least at basic blocks entries) discard some outstanding 
data compression algorithms to be directly applied. Another 
requirement is the ability to decompress an instruction at run time 
without prohibitively affecting performance.  

Since the Compressed Code RISC Processor – CCRP [15] was 
introduced, many compression techniques have been shown to be 
efficient in code compression [1,3,11] and a few have been 
adopted by industry [7,12]. Recently, researchers have realized 
that the benefits of compression go beyond reducing code size, 
reaching performance improvement and energy consumption 
reduction [2,10]. 

This becomes evident when the decompressor engine is 
positioned between the processor and the cache – a Processor-
Decompressor-Cache (PDC) architecture. In this scheme the 
cache holds compressed instructions, thus increasing its capacity 
and reducing misses. This reduction promotes less main memory 
accesses, saving energy and clock cycles. However, the 
decompressor engine can considerably impact performance 
because it is placed on the processor critical path. If the 
decompressor impact is small, the net result is an improvement on 
performance and reduction in energy consumption. Fast 
decompression techniques, like those based on small dictionaries 
[2,10], have been used to reduce this impact. 

Since indices into the dictionary are usually smaller than an 
instruction word, the compressed code stream gets misaligned, 
frequently requiring two accesses to the cache to decompress one 
instruction. Moreover, instructions redundancies may occur when 
using dictionaries with multiple instructions per entry, because 
their sequence must be obeyed. These restrictions downgrade 
some benefits on energy consumption and performance. 

In the present work we propose a dictionary-based technique 
that packs a set of indices into a fixed size 32-bit word called 
ComPacket. This regular size word allows intermixing original 
instructions with ComPackets, thus eliminating the double cache 
accesses and alignment problems mentioned above. Besides that, 
at a cost of one 32-bit buffer, we hold this word inside the 
decompression engine, thus avoiding unnecessary cache accesses. 

Finally, we have noticed that the dictionary construction 
considerably impacts the final code compressibility and dynamic 
behavior. When static instruction count is elected as the approach 
to select instructions to the dictionary, it usually yields better 
compression results and some performance benefits. On the other 
hand, performance improvements may be considerably enhanced 
by choosing instructions based on dynamic profiling information. 
We propose a mix of static/dynamic instruction count selection 
criteria to construct one dictionary that performs well for both 
scenarios. 
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On average, our results point to a reduction of 35% in code 

size when using only static information to build the dictionary, 
and a reduction in cache accesses of 53% when using just 
dynamic profiling. Cache energy consumption is also reduced to 
54% of the original value. 

In this paper, Section 2 presents the background and related 
work on code compression. Section 3 explains the dictionary 
construction. Section 4 presents the compression method. In 
Section 5 the experimental results are shown and Section 6 
presents our conclusions. 

2. BACKGROUND AND RELATED WORK 
The metric widely used to measure the code compression 

efficiency is the compression ratio (CR). When using dictionary 
techniques, the dictionary itself becomes part of the compressed 
object code (whenever for each application we find one specific 
dictionary). To make this explicit, we include the dictionary size 
in Equation 1 that we use to measure compression ratio. Notice 
that the lower the ratio, the better the compression. 

 

Compressed Program Size + Dictionary SizeCR= Original Program Size Eq. 1
 

One of the key challenges in code compression comes from the 
address misalignment between original and compressed programs. 
This requires an efficient address translation function to map 
addresses during decompression. Two possible solutions to this 
problem are well known: using Address Translation Tables (ATT) 
[15] and patching the addresses in the compressed code [9]. 
Patching is more suitable to PDC architectures because an ATT 
would require a one-to-one address translation. 

2.1 Related Work 
Lefurgy et al [9] experiments used fixed and variable-length 

codewords1. In their first method, 16-bit fixed-length codewords 
are used with a 256-entry dictionary, each entry containing up to 4 
instructions in sequence. Their approach to variable-length 
codewords uses a prefix of four bits to determine the size of the 
codeword. The code stream comes in chunks of 32 bits, which 
may contain partial instructions and/or codewords. Their best 
results produced compression ratios of 61%, 66% and 74% for the 
PowerPC, ARM and i386, respectively. No report on energy and 
performance is available. 

Benini et al [2] used a dictionary based compression method 
formed by using dynamic instruction profiling information. A 
small 256-entry dictionary with one instruction per entry is used 
to keep the most executed instructions. They compress 
instructions that belong to the dictionary if they can be 
accommodated in a cache line size package. For every 
compressed cache line, the first 32-bit word is used as an escape 
sequence and a set of flags to indicate the presence of compressed/ 
uncompressed instruction in the remaining 12 bytes of the line. A 
75% compression ratio is produced for the DLX. Also, a 30% 
energy reduction was obtained. Unfortunately, cache access time 
is increased in 32% as the decompressor is coupled with the 
cache. 

Lekatsas et al [10] used the Xtensa 1040 processor to support a 
small dictionary compression method based on static instruction 
count. This 32-bit processor has irregular instructions sizes of 16 
and 24 bits. The authors used variable-length codewords of 8 and 
16 bits to compress the original 24 bit instructions. Their primary 

                                                           
1 A codeword is the bit pattern attributed to an index. 

goal was to guarantee that the decompressor engine requires no 
more than one cycle to decompress one or two codewords. Some 
decompression overhead comes from the fact that the engine is 
supposed to keep fractions of misaligned instructions or 
codewords that come from the cache. Moreover, the dictionary 
was doubled (2x256-entry) to support two codeword 
decompression per cycle. A 35% code size reduction was 
achieved and a 25% performance improvement (cycles count 
reduction) was reported. Unfortunately, no detailed information 
about memory hierarchy parameters (like cache miss penalty) is 
available to compare to our work. 

Our compression method differs from previous work by the 
use of word-sized sets of indices, eliminating compressed code 
misalignments, and by our new approach to build the dictionary, 
based on mixing static and dynamic profiling. 

3. DICTIONARY CONSTRUCTION 
The composition of a small dictionary is based on any 

classification of instructions or pieces of instructions. One widely 
used classification is the static occurrence of every instruction in 
the code. Whenever compression ratio is the main goal, this 
approach yields the best results, as we represent with fewer bits 
the instructions that appear the most. Other methods use dynamic 
profiling information to guide the dictionary construction. This 
tends to put into the dictionary the most executed instructions, and 
may be very effective in some dynamic goal, like bus toggles 
minimization. We use in this paper the name static dictionary 
(SD) for those dictionaries built upon static classification of 
instructions. Similarly, we name dynamic dictionary (DD) those 
formed by the execution count of every instruction. 

The question we have been investigating is: how different are 
SD and DD? We restrict the answer to the case of small 
dictionaries with one instruction per entry, as they are appropriate 
to the PDC architecture we are investigating. Figure 1 shows the 
number of redundant instructions (intersection of SD and DD) for 
several dictionary sizes. Notice that, for our case (256-entry 
dictionary) 30% of instructions are redundant on average. 

Figure 2 shows how skewed is instruction count distribution 
inside the dictionary. We ranked and normalized the values to the 
biggest count obtained. We observe that the first instructions in 
the dictionary determines much of the compressibility. The 
dynamic dictionary has a very similar behavior. Observe that the 
x-scale in the graph is not linear to help in the visualization of its 
leftmost part. 

From these observations we outline a dictionary composition 
that contains the most static occurred instruction, as well as, the 
most executed ones. The assumption is that by choosing the 
instruction which statically appears the most will help in the 
compression ratio, and at the same time, choosing the instruction 
that is fetched the most will help in performance. 

To blend SD and DD into an Unified Dictionary (UniD) we 
begin by ordering them by their natural selection criteria: static 
count for the SD and dynamic count for the DD. Then we take the 
first (most occurred) instruction from SD and check if it is present 
in UniD. If not, we include it. We do the same to include one 
instruction from DD, the second from SD, the second from DD, 
and so on. We finish searching instructions from SD and DD 
when the UniD is full. This simple version is described in [13]. 

An extension to this basic approach is the possibility of 
choosing a threshold for ‘dynamic instructions’ in UniD. We can 
vary the DD instruction proportion in UniD from none (0%) to all 
entries (100%). We call this the dynamic factor, f, of the UniD. 
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Figure 3: Typical Trade-off Exploitation  
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nal 22-bit displacement can be represented with only 8 
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to cope with the offset patching problem in small 
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t bits of branch instructions in the dictionary and use a 
its inside the ComPacket to store the patched offset. 

lso allow targets to be any index, so that whenever 
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[2,10]. We currently do not support two or more targets 
es) in the same ComPacket. 
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bits) are allowed. Format 2B is a repository for 2 8-bit indices 
with possibly one of them being a branch. In this case, the last 8 
bit slot is filled with the small branch offset. 

The identification of the format is done by a pair of bits (S and 
B) in the escape sequence depicted in Figure 4. Whenever S = 0, 
the ComPacket uses slots of 6 bits for indices and/or branches 
offsets. Whenever S=1 the slots are 8 bit-long. The B bit signals 
the presence of a slot containing a branch offset. Notice that the 
branch offset is always in the last slot independent of which index 
in the ComPacket points to a branch. An extra bit in front of each 
dictionary entry identifies this kind of instruction. For the 256 
entries dictionary, this extra bit represents just a 3% overhead in 
its bit capacity. 

The TT pair of bits points to the index from which execution 
should begin after a branch into the ComPacket. When TT = 002 
the target is the first index, when TT = 012, the second, and so on. 
If ComPacket is entered sequentially (not due to a branch), the 
first index is always used. The remaining 4 bits of the escape 
sequence are used for assigning an invalid instruction in the 
SPARC ISA (op = 002 and op2 = 00X2). Notice that Figure 4 is a 
pictorial representation of the bit fields. They are actually disjoint 
but have a fixed location. 

4.1. Compression Algorithm 
The algorithm for compression is outlined in Figure 5. After 

the dictionary construction (stated in Section 3) it marks in the 
code the instructions that belong to the dictionary (D) and/or are 
targets (T). Then, it tries to select and mark ComPacket formats 
for each set of instruction in dictionary, from the most effective 
(Format 4) to the simpler (Format 2B). After choosing the 
formats, the compressor assembles and replaces them in the code. 
Finally, the branch addresses are patched.  

Figure 6 shows the algorithm in action. After the dictionary 
construction and marking steps, it considers the first instruction in 

the dictionary: b. It finds in the code the first instance of b (at 
address 04) and tries to build a Format 4 ComPacket. Although a, 
b and c are dictionary instructions, they cannot compose a Format 
4 (00 to 0c addresses) because two instructions are targets. 
Format 3 or 3B are not possible for the same reason. Format 2B is 
possible by combining a and b, thus they are marked compressed. 
As they are not branches the last slot is padded (hachured in 
figure). The second instance of b is at address 0c and again a 
Format 4 is not possible to be formed because just c, b and a (at 
addresses 08 to 10) are still uncompressed (b at address 04 was 
marked compressed in the former step). In this case a Format 3 is 
formed, as no branch instruction is present. As it finishes with b 
the algorithm considers the next instructions in the dictionary. The 
formats are presented in the figure bounded by dotted lines. 

Next, the formats chosen are applied to the code. See in the 
Compressed Code the dashed lines pointing into the dictionary 
entries. Finally branch addresses are patched. Instruction f is 
patched normally inside the new code. Instruction h is patched 
inside the ComPacket. Notice the branch mark in the 
corresponding dictionary entry, the target marks (dots) and offsets 
in the compressed code. 

5. RESULTS 
We used a simulator of the Leon processor (SPARC v8) [4] 

developed in our lab to support our experiments. The benchmarks 
are extracted from MiBench [5] and Mediabench [8]. They are a 
string search algorithm, Search, commonly used in office suites; 
Dijkstra, an algorithm used in network routers; Djpeg and Cjpeg, 
used for compressing and decompressing images from and to 
JPEG formats; Adpcm encodes or decodes audio; and Pegwit, an 
encryption tool. 
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Figure 7: (a) Compression Ratio and (b) Accesses Reduction to the I-Cache 
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We used LECCS, a GCC based compiler for the Leon 

processor, with –O2 option in all the benchmarks, so that we 
avoid typical optimizations that increase object code size, like 
function in-lining and loop unrolling. 

Figure 7(a) depicts the compression ratio for the complete 
range of experiments. They exploit all compositions of 
dictionaries from static and dynamic measurements. The best 
compression, as expected, is obtained by using only instructions 
from SD (f = 0%). Nevertheless, by using some combination in 
which f is lower than 50%, the impact on compression ratio is 
quite small. This is not the case when f goes up to 90% so that 
compression is severely affected by the dictionary composition. 

The claim of using the regular word-sized ComPacket is to 
avoid more than one access to the cache to decompress one 
instruction. Moreover just one cache lookup is necessary to 
execute the entire set of instructions pointed by the indices inside 
the ComPacket (as it is kept in a decompressor engine’s buffer). 

Figure 7(b) presents the results on cache access reduction. 
Notice that accesses strongly decrease from f=0% to f=20%. After 
that, an incremental decrease is observed until f=90%, where 
decrease is again enhanced (although not like the first 20%). As f 
grows, more ComPackets are found during execution providing 
more accesses reduction. This kind of figure can be used to help 
choosing an ideal proportion of instructions in the dictionary to 
meet specific system requirements. 

We also ran experiments to measure the bus activity between 
the decompressor and the cache. This represents an important 
metric to define bus energy consumption. We were particularly 
interested in measuring the Hamming distance accumulated 
through the execution of the code. In Table 1 we present the net 
results obtained by adding the addresses and code bit toggles for 
four selected values of f: 0%, 20%, 50% and 100%. 

These values were chosen because, as aforementioned, when f 
gets near 20% a significant decrease in bus toggles is already 
sensed. One exception in this behavior is the Adpcm, for which a  
 

Table 1: Bus Toggles Reduction (% of original) 
f  Original 

(uncomp) 0% 20% 50%  100% 
Search 112,028,630 90% 65% 60% 54% 
Pegwit 409,946,579 94% 70% 65% 56% 
Djpeg 45,878,397 97% 78% 74% 54% 
Cjpeg 194,398,718 96% 78% 73% 63% 
Adpcm_enc 126,567,600 63% 58% 56% 45% 
Adpcm_dec 96,667,537 53% 48% 48% 42% 
Dijkstra 665,188,662 92% 56% 52% 49% 

Average 84% 65% 61% 52% 
 

good reduction in bus toggles is observed, even when using a 
static dictionary. We attribute this behavior to two factors: the size 
of the original code (less than 2K instructions), and the greatest 
similarity between SD and DD that we measured. 

5.1 A Selected Case of f 
Finally, we chose a dictionary composition to show how it is 

related to the best and worst results. The value of f is fixed in 50% 
and we trade Compression for Cache Accesses. Table 2 
summarizes the results. We see that such a dictionary performs 
very close to the best compression ratio achieved, differing only 
2% on average. It also substantially differs from the worst 
compression ratio in 15%. Furthermore, the cache reduction is 7% 
worse than the best results. This contrasts with the 25% distance 
from the worst case. Such a dictionary approaches the best results 
from both scenarios at the same time. Thus by mixing instructions 
from the SD and the DD we can have high compression ratios 
with lesser caches accesses, reducing energy consumption. 

One important aspect of compression, especially when a PDC 
architecture is used, is the cycle overhead the decompressor may 
produce. Using small dictionaries usually satisfies the cycle time 
budget available [10] for decompression in one cycle. 
Nevertheless, as the decompression engine is positioned like a 
pipeline pre-fetch stage, at least one cycle overhead is observed 
when a branch is taken. In our scheme this extra cycle is just 
required whenever a branch is taken to outside the current 
ComPacket. The claim is that this extra-cycle is compensated by 
the reduction in cache misses. 

In fact, any reduction in cycle count depends on cache size and 
miss penalty. To demonstrate our experiments we have chosen for 
each benchmark a representative cache size, around the point in 
which an increase in cache size produces just a modest hit ratio 
improvement. They are all direct mapped with 16 bytes per line. 

Then, we have explored the final cycle count as a function of 
the cache miss penalty. Miss penalty is much dependent on the 
memory hierarchy (a second level of cache, an on-chip RAM, an 
off-chip flash, their size and technology). Hennessy and Patterson 
point somewhat from 8 to 150 penalty cycles for a L1 cache miss 
[6]. 

In Figure 8 we present the results from a hypothetical 0 cycles 
miss penalty to 100 cycles. Whenever a cache miss has a penalty 
of 10 cycles, a total cycle reduction of 27% is achieved. Even for 
a fast main memory like this, the decompressor overhead in cycles 
is completely outweighed by the savings in main memory. 

For the same platforms we have evaluated the energy 
consumption in the I-Cache. The adopted energy model was 
extracted from the CACTI tool [14] for a CMOS 0.8um 

 C
 ∆ % 

From 
Best 

∆ %
From
Wors

Search 1 9 
Pegwit 1 10 
Djpeg 3 15 
Cjpeg 3 9 

Adpcm_enc 2 16 
Adpcm_dec 1 15 

Dijkstra 4 34 
Average 2 15 
Table 2: Relation of Best/Worst Results for a Selected Case of f 
ompression Ratio  Cache Accesses Reduction  

 
 
t 

Best 
Value 

Worst 
Value  f =50%  Worst 

Value 
Best 

Value 

∆ % 
From 
Worst 

∆ % 
From 
Best 

78 86 77 56 87 51 31 5 Search 
85 96 86 56 88 52 32 4 Pegwit 
80 98 83 65 95 48 30 17 Djpeg 
80 92 83 63 89 55 26 8 Cjpeg 
57 75 59 52 52 40 0 8 Adpcm_enc 
57 73 58 45 52 39 7 6 Adpcm_dec 
56 94 60 42 92 42 50 0 Dijkstra 

 25 7 Average 
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technology. Table 3 summarizes the results. It shows the energy 
consumed in the I-Cache without and with code compression. The 
percentile reduction is also presented. Notice that an outstanding 
energy reduction of 46% is obtained on average. 

Regrettably, this energy reduction in the cache comes at a cost. 
The dictionary lookups also consume energy. Fortunately, this 
value becomes negligible when the cache size increases. For a 
256k cache the dictionary consumption represents just 3% of the 
cache energy. 

We observe that one drawback of this work is the fact that we 
cannot compress one instruction that belongs to the dictionary if it 
is not neighbor to other(s) that also belongs to the dictionary (case 
of k in Figure 6). This implies that the compression ratio could be 
better. On the other hand, the code stream does not have pieces of 
instructions, as proposed by other researches, considerably 
simplifying decompression. 

Finally we conclude that packing indices into the regular 
structure of the ComPacket enhances cache accesses reduction 
yielding energy savings and performance improvement. 
Moreover, our dictionary construction method is able to approach 
simultaneously the best results from pure static and pure dynamic 
information based dictionaries code compression techniques 
which represents an advance in trade off exploration. 

 
Table 3: I-Cache Energy Consumption 

  Uncompress. code 
Joule x 10-3 

 Compressed code 
Joule x 10-3 

Reduction 
(%) 

Search 30.34 17.10 44 
Pegwit 104.34 58.93 44 
Djpeg 9.82 6.38 35 
Cjpeg 47.68 30.26 37 
Adpcm_enc 19.94 10.38 48 
Adpcm_dec 14.84 6.80 54 
Dijkstra 110.66 47.47 57 

Average 46 

6. CONCLUSIONS 
So far we have presented a new dictionary based compression 

method that is independent of the cache organization and uses a 
simple low-impact decompressor. The compression uses a regular 
32-bit word named ComPacket that holds variable-length indices 
pointing into the dictionary. The decompressor holds the 
ComPacket until an instruction outside its boundary is required, 
thus avoiding unnecessary cache accesses. We also studied 
different dictionary construction methods to allow an effective 
trade-off exploration for compression, energy reduction and 
performance at the same time. 

 

On average the compression ratio obtained was 70% taking 
into account the dictionary (that represents about 5% of the 
compressed code, so a 35% code size reduction was achieved). 
We also show a reduction of more than 50% in cache accesses, a 
27% reduction in cycle count even with a fast main memory and 
an impressive 46% reduction in energy dissipated in the I-Cache. 
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