

Multi-Profile Based Code Compression

E. Wanderley Netto
CEFET/RN IC/UNICAMP

R. Azevedo
IC/UNICAMP

P. Centoducatte

IC/UNICAMP

G. Araujo

IC/UNICAMP
Caixa Postal 6176

13084-971 Campinas/SP Brazil
+55 19 3788 5838

{braulio, rodolfo, ducatte, guido}@ic.unicamp.br

ABSTRACT
Code compression has been shown to be an effective technique to
reduce code size in memory constrained embedded systems. It has
also been used as a way to increase cache hit ratio, thus reducing
power consumption and improving performance. This paper
proposes an approach to mix static/dynamic instruction profiling
in dictionary construction, so as to best exploit trade-offs in
compression ratio/performance. Compressed instructions are
stored as variable-size indices into fixed-size codewords,
eliminating compressed code misalignments. Experimental results,
using the Leon (SPARCv8) processor and a program mix from
MiBench and Mediabench, show that our approach halves the
number of cache accesses and power consumption while produces
compression ratios as low as 56%.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; C.3 [Special
Purpose and Aplication Based Systems]: Real-time and
Embedded systems.

General Terms
Performance, Design.

Keywords
Code compression, compression, code density.

1. INTRODUCTION
Embedded computing has been moving toward sophisticated

high end systems. As a result, embedded programs are becoming
larger, often requiring high-performance processors to meet
performance constraints. RISC processors have been traditionally
used to integrate the core computational unit of high-end
embedded systems. However, memory area is one of the most
constrained resources in embedded systems and code density is
not RISC best feature.

One of the possible solutions to squeeze code is the usage of

code compression. Unfortunately, special program requirements
like the possibility of starting decompressing at any point in the
code (or at least at basic blocks entries) discard some outstanding
data compression algorithms to be directly applied. Another
requirement is the ability to decompress an instruction at run time
without prohibitively affecting performance.

Since the Compressed Code RISC Processor – CCRP [15] was
introduced, many compression techniques have been shown to be
efficient in code compression [1,3,11] and a few have been
adopted by industry [7,12]. Recently, researchers have realized
that the benefits of compression go beyond reducing code size,
reaching performance improvement and energy consumption
reduction [2,10].

This becomes evident when the decompressor engine is
positioned between the processor and the cache – a Processor-
Decompressor-Cache (PDC) architecture. In this scheme the
cache holds compressed instructions, thus increasing its capacity
and reducing misses. This reduction promotes less main memory
accesses, saving energy and clock cycles. However, the
decompressor engine can considerably impact performance
because it is placed on the processor critical path. If the
decompressor impact is small, the net result is an improvement on
performance and reduction in energy consumption. Fast
decompression techniques, like those based on small dictionaries
[2,10], have been used to reduce this impact.

Since indices into the dictionary are usually smaller than an
instruction word, the compressed code stream gets misaligned,
frequently requiring two accesses to the cache to decompress one
instruction. Moreover, instructions redundancies may occur when
using dictionaries with multiple instructions per entry, because
their sequence must be obeyed. These restrictions downgrade
some benefits on energy consumption and performance.

In the present work we propose a dictionary-based technique
that packs a set of indices into a fixed size 32-bit word called
ComPacket. This regular size word allows intermixing original
instructions with ComPackets, thus eliminating the double cache
accesses and alignment problems mentioned above. Besides that,
at a cost of one 32-bit buffer, we hold this word inside the
decompression engine, thus avoiding unnecessary cache accesses.

Finally, we have noticed that the dictionary construction
considerably impacts the final code compressibility and dynamic
behavior. When static instruction count is elected as the approach
to select instructions to the dictionary, it usually yields better
compression results and some performance benefits. On the other
hand, performance improvements may be considerably enhanced
by choosing instructions based on dynamic profiling information.
We propose a mix of static/dynamic instruction count selection
criteria to construct one dictionary that performs well for both
scenarios.

15.2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.
244

On average, our results point to a reduction of 35% in code

size when using only static information to build the dictionary,
and a reduction in cache accesses of 53% when using just
dynamic profiling. Cache energy consumption is also reduced to
54% of the original value.

In this paper, Section 2 presents the background and related
work on code compression. Section 3 explains the dictionary
construction. Section 4 presents the compression method. In
Section 5 the experimental results are shown and Section 6
presents our conclusions.

2. BACKGROUND AND RELATED WORK
The metric widely used to measure the code compression

efficiency is the compression ratio (CR). When using dictionary
techniques, the dictionary itself becomes part of the compressed
object code (whenever for each application we find one specific
dictionary). To make this explicit, we include the dictionary size
in Equation 1 that we use to measure compression ratio. Notice
that the lower the ratio, the better the compression.

Compressed Program Size + Dictionary SizeCR= Original Program Size Eq. 1

One of the key challenges in code compression comes from the
address misalignment between original and compressed programs.
This requires an efficient address translation function to map
addresses during decompression. Two possible solutions to this
problem are well known: using Address Translation Tables (ATT)
[15] and patching the addresses in the compressed code [9].
Patching is more suitable to PDC architectures because an ATT
would require a one-to-one address translation.

2.1 Related Work
Lefurgy et al [9] experiments used fixed and variable-length

codewords1. In their first method, 16-bit fixed-length codewords
are used with a 256-entry dictionary, each entry containing up to 4
instructions in sequence. Their approach to variable-length
codewords uses a prefix of four bits to determine the size of the
codeword. The code stream comes in chunks of 32 bits, which
may contain partial instructions and/or codewords. Their best
results produced compression ratios of 61%, 66% and 74% for the
PowerPC, ARM and i386, respectively. No report on energy and
performance is available.

Benini et al [2] used a dictionary based compression method
formed by using dynamic instruction profiling information. A
small 256-entry dictionary with one instruction per entry is used
to keep the most executed instructions. They compress
instructions that belong to the dictionary if they can be
accommodated in a cache line size package. For every
compressed cache line, the first 32-bit word is used as an escape
sequence and a set of flags to indicate the presence of compressed/
uncompressed instruction in the remaining 12 bytes of the line. A
75% compression ratio is produced for the DLX. Also, a 30%
energy reduction was obtained. Unfortunately, cache access time
is increased in 32% as the decompressor is coupled with the
cache.

Lekatsas et al [10] used the Xtensa 1040 processor to support a
small dictionary compression method based on static instruction
count. This 32-bit processor has irregular instructions sizes of 16
and 24 bits. The authors used variable-length codewords of 8 and
16 bits to compress the original 24 bit instructions. Their primary

1 A codeword is the bit pattern attributed to an index.

goal was to guarantee that the decompressor engine requires no
more than one cycle to decompress one or two codewords. Some
decompression overhead comes from the fact that the engine is
supposed to keep fractions of misaligned instructions or
codewords that come from the cache. Moreover, the dictionary
was doubled (2x256-entry) to support two codeword
decompression per cycle. A 35% code size reduction was
achieved and a 25% performance improvement (cycles count
reduction) was reported. Unfortunately, no detailed information
about memory hierarchy parameters (like cache miss penalty) is
available to compare to our work.

Our compression method differs from previous work by the
use of word-sized sets of indices, eliminating compressed code
misalignments, and by our new approach to build the dictionary,
based on mixing static and dynamic profiling.

3. DICTIONARY CONSTRUCTION
The composition of a small dictionary is based on any

classification of instructions or pieces of instructions. One widely
used classification is the static occurrence of every instruction in
the code. Whenever compression ratio is the main goal, this
approach yields the best results, as we represent with fewer bits
the instructions that appear the most. Other methods use dynamic
profiling information to guide the dictionary construction. This
tends to put into the dictionary the most executed instructions, and
may be very effective in some dynamic goal, like bus toggles
minimization. We use in this paper the name static dictionary
(SD) for those dictionaries built upon static classification of
instructions. Similarly, we name dynamic dictionary (DD) those
formed by the execution count of every instruction.

The question we have been investigating is: how different are
SD and DD? We restrict the answer to the case of small
dictionaries with one instruction per entry, as they are appropriate
to the PDC architecture we are investigating. Figure 1 shows the
number of redundant instructions (intersection of SD and DD) for
several dictionary sizes. Notice that, for our case (256-entry
dictionary) 30% of instructions are redundant on average.

Figure 2 shows how skewed is instruction count distribution
inside the dictionary. We ranked and normalized the values to the
biggest count obtained. We observe that the first instructions in
the dictionary determines much of the compressibility. The
dynamic dictionary has a very similar behavior. Observe that the
x-scale in the graph is not linear to help in the visualization of its
leftmost part.

From these observations we outline a dictionary composition
that contains the most static occurred instruction, as well as, the
most executed ones. The assumption is that by choosing the
instruction which statically appears the most will help in the
compression ratio, and at the same time, choosing the instruction
that is fetched the most will help in performance.

To blend SD and DD into an Unified Dictionary (UniD) we
begin by ordering them by their natural selection criteria: static
count for the SD and dynamic count for the DD. Then we take the
first (most occurred) instruction from SD and check if it is present
in UniD. If not, we include it. We do the same to include one
instruction from DD, the second from SD, the second from DD,
and so on. We finish searching instructions from SD and DD
when the UniD is full. This simple version is described in [13].

An extension to this basic approach is the possibility of
choosing a threshold for ‘dynamic instructions’ in UniD. We can
vary the DD instruction proportion in UniD from none (0%) to all
entries (100%). We call this the dynamic factor, f, of the UniD.

245

Eq. 2 defines f.

f =

As a result, we
meet special syst
0%, some instruc
there is an inte
dictionary constru
|UniD|) instruction

This dictionar
investigate the b
several situations.
obtain when comp
over original prog
case). The best co
the other hand, m
the entire dictiona

The compress
toggle ratio, but n
knee in the curve
f=20% an express

2 Between the decom

 ESC Index1 Index2 Index3 Index4

 ESC Index1 Index2 Index3 B_off

6 bits 6 bits 6 bits 6 bits 8 bits
Format 4
Format 3B

0

64

128

192

256

1 64 128 192 256

N
um

be
r o

f R
ed

un
da

nt
 S

D
/D

D
 In

st
ru

ct
io

ns

Search

Pegwit

Djpeg

Cjpeg

Adpcm_enc

Adpcm_dec

Dijkstra

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Dynamic Factor, f , in UniD (%)

C
om

pr
es

si
on

 a
nd

 B
us

 T
og

gl
e

R
at

io
 (%

)

Compression Ratio Bus Toggles Ratio

0

25

50

75

100

N
or

m
al

iz
ed

 S
ta

tic
 C

ou
nt

 (%
)

Dictionary Sizes

Figure 1: Dynamic vs. Static
Dictionaries Similarity
Instructions from DD
Dictionary Size ×100% Eq. 2

 can exploit the dictionary composition space to
em requirements. Of course when choosing f =
tions from the DD still belong to UniD because
rsection between the SD and DD sets. The
ction algorithm guarantees that at least (f ×
s come from DD.

y construction method opens up opportunities to
ehavior of the code compression algorithm in
 As an example, Figure 2 presents the curve we
uting the CR and bus2 toggle ratio (compressed
ram bus toggles), for the pegwit program (avg.
mpression ratio can be obtained when f=0%. On
inimization of bus toggles is best explored when
ry is formed by instructions from DD (f=100%).
ion ratio evolution is smoother than the bus
otice that when f is greater than 90%, a typical
 is formed. On the other hand, from f=0% to

ive reduction in bus toggles is achieved.

pressor and the I-cache.

We co
dynamic
same time

4. COM
To ex

method w
of-the-art
solutions

Differ
branches
(the origi
bits). In f
In order
branches
significan
slot of 8 b

We a
branching
index, re
methods
(or branch

As afo
sets of in
position,
remaining
the ComP
includes i
presence

Figure
compress
contents.
that just t
of 8 bits
dictionary
bits. This
tiny branc

F
F

4 9 60 110 160 210 256

Static Dictionary Instruction Rank

Search

Pegwit

Djpeg

Cjpeg

Adpcm_enc

Adpcm_dec

Dijkstra

246
Figure 3: Typical Trade-off Exploitation
(Pegwit program example)
100%

75%

50%

25%

0%
nclude that relying only in one statistic (either static or
profiling) is less effective than relying on both at the
.

PRESSION METHOD
plore the functionality of our dictionary construction
e devised a technique that uses some ideas on the state-

 PDC code compressions schemes but with original
to their weakness and a new coding approach.
ent from [9], our compression method allows relative
to belong to the dictionary if they have a small offset

 ESC Index1 Index2 Index3

 ESC Index1 Index2 B_off
8 bits 8 bits 8 bits 8 bits

ormat 3
ormat 2B

 invalid op-code T T S B
4 bits 2 bits 1 bit 1 bit

Figure 4: ComPackets Formats
Figure 2: Dictionary Instruction Static Usage Count

nal 22-bit displacement can be represented with only 8
act, small branches are the majority in typical program.
to cope with the offset patching problem in small

that belong to the dictionary, we keep just the 10 most
t bits of branch instructions in the dictionary and use a
its inside the ComPacket to store the patched offset.

lso allow targets to be any index, so that whenever
 into a ComPacket the target is not necessarily the first
ducing the required alignment padding from other
[2,10]. We currently do not support two or more targets
es) in the same ComPacket.
rementioned, we use a 32-bit word as a repository for
dices. An escape sequence of 8 bits is used at a fixed
allowing fast decoding and interpretation of the
 24 bits. This escape sequence is responsible to differ
acket word from an uncompressed instruction and it also
nformation about the number of indices and its sizes, the
of small branch offset and target index.
 4 presents the four ComPackets formats our
ion method supports. They are named after their
Format 4 has 4 indices of 6 bits into the dictionary such
he first 64 entries are accessible. Format 3 has 3 indices
each, thus allowing full access to the 256 entries of the
 we use. Format 3B has 3 indices and branch slot of 6
 format restricts the branching offset size, so that just
hes (22-bit displacement that can be represented with 6

bits) are allowed. Format 2B is a repository for 2 8-bit indices
with possibly one of them being a branch. In this case, the last 8
bit slot is filled with the small branch offset.

The identification of the format is done by a pair of bits (S and
B) in the escape sequence depicted in Figure 4. Whenever S = 0,
the ComPacket uses slots of 6 bits for indices and/or branches
offsets. Whenever S=1 the slots are 8 bit-long. The B bit signals
the presence of a slot containing a branch offset. Notice that the
branch offset is always in the last slot independent of which index
in the ComPacket points to a branch. An extra bit in front of each
dictionary entry identifies this kind of instruction. For the 256
entries dictionary, this extra bit represents just a 3% overhead in
its bit capacity.

The TT pair of bits points to the index from which execution
should begin after a branch into the ComPacket. When TT = 002
the target is the first index, when TT = 012, the second, and so on.
If ComPacket is entered sequentially (not due to a branch), the
first index is always used. The remaining 4 bits of the escape
sequence are used for assigning an invalid instruction in the
SPARC ISA (op = 002 and op2 = 00X2). Notice that Figure 4 is a
pictorial representation of the bit fields. They are actually disjoint
but have a fixed location.

4.1. Compression Algorithm
The algorithm for compression is outlined in Figure 5. After

the dictionary construction (stated in Section 3) it marks in the
code the instructions that belong to the dictionary (D) and/or are
targets (T). Then, it tries to select and mark ComPacket formats
for each set of instruction in dictionary, from the most effective
(Format 4) to the simpler (Format 2B). After choosing the
formats, the compressor assembles and replaces them in the code.
Finally, the branch addresses are patched.

Figure 6 shows the algorithm in action. After the dictionary
construction and marking steps, it considers the first instruction in

the dictionary: b. It finds in the code the first instance of b (at
address 04) and tries to build a Format 4 ComPacket. Although a,
b and c are dictionary instructions, they cannot compose a Format
4 (00 to 0c addresses) because two instructions are targets.
Format 3 or 3B are not possible for the same reason. Format 2B is
possible by combining a and b, thus they are marked compressed.
As they are not branches the last slot is padded (hachured in
figure). The second instance of b is at address 0c and again a
Format 4 is not possible to be formed because just c, b and a (at
addresses 08 to 10) are still uncompressed (b at address 04 was
marked compressed in the former step). In this case a Format 3 is
formed, as no branch instruction is present. As it finishes with b
the algorithm considers the next instructions in the dictionary. The
formats are presented in the figure bounded by dotted lines.

Next, the formats chosen are applied to the code. See in the
Compressed Code the dashed lines pointing into the dictionary
entries. Finally branch addresses are patched. Instruction f is
patched normally inside the new code. Instruction h is patched
inside the ComPacket. Notice the branch mark in the
corresponding dictionary entry, the target marks (dots) and offsets
in the compressed code.

5. RESULTS
We used a simulator of the Leon processor (SPARC v8) [4]

developed in our lab to support our experiments. The benchmarks
are extracted from MiBench [5] and Mediabench [8]. They are a
string search algorithm, Search, commonly used in office suites;
Dijkstra, an algorithm used in network routers; Djpeg and Cjpeg,
used for compressing and decompressing images from and to
JPEG formats; Adpcm encodes or decodes audio; and Pegwit, an
encryption tool.

 (a) (b)

Figure 7: (a) Compression Ratio and (b) Accesses Reduction to the I-Cache

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 f

Compression
Ratio (%)

Search

Pegwit

Djpeg

Cjpeg

Adpcm_enc

Adpcm_dec

Dijkstra

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 f

Cache
Accesses

(%)

Compress()
1. Build the Dictionary (Section 3)
2. Code Marking
3. Find dictionary instructions in the Code

a. Try to mark Format 4 ComPacket
b. Try to mark Format 3/3B ComPacket
c. Try to mark Format 2B ComPacket

4. Assembly ComPacket formats marked in 3.
5. Replace ComPackets in the code
6. Patch addresses

Figure 5: Compression Algorithm Outlined

E
E
B[-1] f
E -3

j
k

a
b
c
b
a
f
i
h
g
j
k

(D)
(DT)
(DT)
(D)
(D)

(D)
(D)
(D)

(D)

B[-3]

B[-6]

00

04

08

0c

10

14

18

1c

20

24

28

F2B

F3

F3B

b
a
d
c
g
h
i
k

••••
••••

32bits

1

32bits

32bits
Branch
Mark

 Uncompressed Code Compressed Code Dictionary

Figure 6: Compression Example

247

We used LECCS, a GCC based compiler for the Leon

processor, with –O2 option in all the benchmarks, so that we
avoid typical optimizations that increase object code size, like
function in-lining and loop unrolling.

Figure 7(a) depicts the compression ratio for the complete
range of experiments. They exploit all compositions of
dictionaries from static and dynamic measurements. The best
compression, as expected, is obtained by using only instructions
from SD (f = 0%). Nevertheless, by using some combination in
which f is lower than 50%, the impact on compression ratio is
quite small. This is not the case when f goes up to 90% so that
compression is severely affected by the dictionary composition.

The claim of using the regular word-sized ComPacket is to
avoid more than one access to the cache to decompress one
instruction. Moreover just one cache lookup is necessary to
execute the entire set of instructions pointed by the indices inside
the ComPacket (as it is kept in a decompressor engine’s buffer).

Figure 7(b) presents the results on cache access reduction.
Notice that accesses strongly decrease from f=0% to f=20%. After
that, an incremental decrease is observed until f=90%, where
decrease is again enhanced (although not like the first 20%). As f
grows, more ComPackets are found during execution providing
more accesses reduction. This kind of figure can be used to help
choosing an ideal proportion of instructions in the dictionary to
meet specific system requirements.

We also ran experiments to measure the bus activity between
the decompressor and the cache. This represents an important
metric to define bus energy consumption. We were particularly
interested in measuring the Hamming distance accumulated
through the execution of the code. In Table 1 we present the net
results obtained by adding the addresses and code bit toggles for
four selected values of f: 0%, 20%, 50% and 100%.

These values were chosen because, as aforementioned, when f
gets near 20% a significant decrease in bus toggles is already
sensed. One exception in this behavior is the Adpcm, for which a

Table 1: Bus Toggles Reduction (% of original)
f Original

(uncomp) 0% 20% 50% 100%
Search 112,028,630 90% 65% 60% 54%
Pegwit 409,946,579 94% 70% 65% 56%
Djpeg 45,878,397 97% 78% 74% 54%
Cjpeg 194,398,718 96% 78% 73% 63%
Adpcm_enc 126,567,600 63% 58% 56% 45%
Adpcm_dec 96,667,537 53% 48% 48% 42%
Dijkstra 665,188,662 92% 56% 52% 49%

Average 84% 65% 61% 52%

good reduction in bus toggles is observed, even when using a
static dictionary. We attribute this behavior to two factors: the size
of the original code (less than 2K instructions), and the greatest
similarity between SD and DD that we measured.

5.1 A Selected Case of f
Finally, we chose a dictionary composition to show how it is

related to the best and worst results. The value of f is fixed in 50%
and we trade Compression for Cache Accesses. Table 2
summarizes the results. We see that such a dictionary performs
very close to the best compression ratio achieved, differing only
2% on average. It also substantially differs from the worst
compression ratio in 15%. Furthermore, the cache reduction is 7%
worse than the best results. This contrasts with the 25% distance
from the worst case. Such a dictionary approaches the best results
from both scenarios at the same time. Thus by mixing instructions
from the SD and the DD we can have high compression ratios
with lesser caches accesses, reducing energy consumption.

One important aspect of compression, especially when a PDC
architecture is used, is the cycle overhead the decompressor may
produce. Using small dictionaries usually satisfies the cycle time
budget available [10] for decompression in one cycle.
Nevertheless, as the decompression engine is positioned like a
pipeline pre-fetch stage, at least one cycle overhead is observed
when a branch is taken. In our scheme this extra cycle is just
required whenever a branch is taken to outside the current
ComPacket. The claim is that this extra-cycle is compensated by
the reduction in cache misses.

In fact, any reduction in cycle count depends on cache size and
miss penalty. To demonstrate our experiments we have chosen for
each benchmark a representative cache size, around the point in
which an increase in cache size produces just a modest hit ratio
improvement. They are all direct mapped with 16 bytes per line.

Then, we have explored the final cycle count as a function of
the cache miss penalty. Miss penalty is much dependent on the
memory hierarchy (a second level of cache, an on-chip RAM, an
off-chip flash, their size and technology). Hennessy and Patterson
point somewhat from 8 to 150 penalty cycles for a L1 cache miss
[6].

In Figure 8 we present the results from a hypothetical 0 cycles
miss penalty to 100 cycles. Whenever a cache miss has a penalty
of 10 cycles, a total cycle reduction of 27% is achieved. Even for
a fast main memory like this, the decompressor overhead in cycles
is completely outweighed by the savings in main memory.

For the same platforms we have evaluated the energy
consumption in the I-Cache. The adopted energy model was
extracted from the CACTI tool [14] for a CMOS 0.8um

 C
 ∆ %

From
Best

∆ %
From
Wors

Search 1 9
Pegwit 1 10
Djpeg 3 15
Cjpeg 3 9

Adpcm_enc 2 16
Adpcm_dec 1 15

Dijkstra 4 34
Average 2 15
Table 2: Relation of Best/Worst Results for a Selected Case of f
ompression Ratio Cache Accesses Reduction

t

Best
Value

Worst
Value f =50% Worst

Value
Best

Value

∆ %
From
Worst

∆ %
From
Best

78 86 77 56 87 51 31 5 Search
85 96 86 56 88 52 32 4 Pegwit
80 98 83 65 95 48 30 17 Djpeg
80 92 83 63 89 55 26 8 Cjpeg
57 75 59 52 52 40 0 8 Adpcm_enc
57 73 58 45 52 39 7 6 Adpcm_dec
56 94 60 42 92 42 50 0 Dijkstra

 25 7 Average

248

technology. Table 3 summarizes the results. It shows the energy
consumed in the I-Cache without and with code compression. The
percentile reduction is also presented. Notice that an outstanding
energy reduction of 46% is obtained on average.

Regrettably, this energy reduction in the cache comes at a cost.
The dictionary lookups also consume energy. Fortunately, this
value becomes negligible when the cache size increases. For a
256k cache the dictionary consumption represents just 3% of the
cache energy.

We observe that one drawback of this work is the fact that we
cannot compress one instruction that belongs to the dictionary if it
is not neighbor to other(s) that also belongs to the dictionary (case
of k in Figure 6). This implies that the compression ratio could be
better. On the other hand, the code stream does not have pieces of
instructions, as proposed by other researches, considerably
simplifying decompression.

Finally we conclude that packing indices into the regular
structure of the ComPacket enhances cache accesses reduction
yielding energy savings and performance improvement.
Moreover, our dictionary construction method is able to approach
simultaneously the best results from pure static and pure dynamic
information based dictionaries code compression techniques
which represents an advance in trade off exploration.

Table 3: I-Cache Energy Consumption

 Uncompress. code
Joule x 10-3

 Compressed code
Joule x 10-3

Reduction
(%)

Search 30.34 17.10 44
Pegwit 104.34 58.93 44
Djpeg 9.82 6.38 35
Cjpeg 47.68 30.26 37
Adpcm_enc 19.94 10.38 48
Adpcm_dec 14.84 6.80 54
Dijkstra 110.66 47.47 57

Average 46

6. CONCLUSIONS
So far we have presented a new dictionary based compression

method that is independent of the cache organization and uses a
simple low-impact decompressor. The compression uses a regular
32-bit word named ComPacket that holds variable-length indices
pointing into the dictionary. The decompressor holds the
ComPacket until an instruction outside its boundary is required,
thus avoiding unnecessary cache accesses. We also studied
different dictionary construction methods to allow an effective
trade-off exploration for compression, energy reduction and
performance at the same time.

On average the compression ratio obtained was 70% taking
into account the dictionary (that represents about 5% of the
compressed code, so a 35% code size reduction was achieved).
We also show a reduction of more than 50% in cache accesses, a
27% reduction in cycle count even with a fast main memory and
an impressive 46% reduction in energy dissipated in the I-Cache.

7. ACKNOWLEDGMENTS
Our thanks to CNPq and FAPESP for supporting this work

(grants #140631/2001-1, #552117/2002-1 and #2000/15083-9).

8. REFERENCES
[1] Araujo, G., Centoducatte, P., Azevedo, R. and Pannain, R.

Expression tree based algorithms for code compression on
embedded RISC architectures. IEEE transactions on VLSI
Systems 8,5 (Oct. 2000), 530-533.

[2] Benini, L., Macci, A. and Nannarelli, A. Cached-code
compression for energy minimization in embedded
processor. In Proceedings of the International Symposium
on Low Power Electronics and Design (Aug.2001), 322-327.

[3] Debray, S. and Evans, W. Profile-guided code compression.
In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation
(June 1998), 95-105.

[4] Gaisler, G. Leon, 2003. see: www.gaisler.com
[5] Guthaus, M., Ringenberg, M., Ernst, D., Austin, T., Mudge,

T. and Brown, R. MiBench: a free, commercially
representative embedded benchmark suite. In Proceedings of
the IEEE 4th Annual Workshop on Workload
Characterization (Dec. 2001), 3-14.

[6] Hennessy, J. and Patterson, D. Computer architecture: a
quantitative approach, 3rd ed. Morgan Kaufmann Publ. 2002.

[7] IBM, CodePack: PowerPC code compression utility user’s
manual. V3. IBM Corporation, 1998.

[8] Lee, C., Potkonjak, M. and Mangione-Smith, W.
MediaBench: a tool for evaluating and synthesizing
multimedia communication system. In Proceedings of the
Int’l Symp. on Microarchitecture (Dec. 1997), 330-337.

[9] Lefurgy, C., Bird, P., Chen, I-C. and Mudge, T. Improving
code density using compression technique. In Proc. of the
Int´l Symp. on Microarchitecture (Dec. 1997), 194-203.

[10] Lekatsas, H., Henkel, J. and Jakkula, V. Design of one-cycle
decompression hardware for performance increase in
embedded systems. In Proceedings of the Design
Automation Conference (June 2002), 34-39.

[11] Lekatsas, H. and Wolf, W. SAMC: a code compression
algorithm for embedded systems. IEEE transactions on CAD
18,12 (Dec. 1999), 1689-1701.

[12] Seal, D. ARM Architecture Reference Manual, 2nd ed.
Adison-Wesley, Reading/MA, 2000.

[13] Wanderley Netto, E., Azevedo, R., Centoducatte, P. and
Araujo, G. Mixed static/dynamic profiling for dictionary
based code compression. In Proceedings of the International
Symposium on System-on-Chip (Nov. 2003), 159-163.

[14] Wilton, S. and Jouppi, N. CACTI: An enhanced cache access
and cycle time model. IEEE J. of Solid-State Circuits 35,5
(May 1996), 677-688.

[15] Wolfe, A. and Chanin, A. Executing compressed programs
on an embedded RISC architecture. In Proceedings of the
Int’l Symp. on Microarchitecture (Dec. 1992), 81-91.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10 20 30 40 50 60 70 80 90 10
0

Cache Miss Penalty (cycles)

N
um

be
r o

f C
lo

ck
 C

yc
le

s
w

rt
O

rig
in

al
 (%

)

search (2k)

pegwit (1k)

djpeg (512)

cjpeg (1k)

adpcm_enc
(128)
adpcm_dec
(128)
dijkstra
(128)

Figure 8: Execution Cycles Relative to Original

slow-down
speed-up

249

