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Abstract

In an embedded system, the cost of storing a program on-
chip can be as high as the cost of a microprocessor. Compress-
ing an application’s code to reduce the amount of memory re-
quired is an attractive way to decrease costs. In this paper,
we examine an executable form of program compression using
echo instructions.
With echo instructions, two or more similar, but not nec-

essarily identical, sections of code can be reduced to a single
copy of the repeating code. The single copy is left in the loca-
tion of one of the original sections of the code. All the other
sections are replaced with a single echo instruction that tells
the processor to execute a subset of the instructions from the
single copy.
We present results of using echo instructions from a full

compiler and simulator implementation that takes input pro-
grams, compresses them with echo instructions, and simulates
their execution. We apply register renaming and instruction
scheduling to expose more similarities in code, use profiles to
guide compression, and propose minor architectural modifica-
tions to support echo instructions. In addition, we compare
and combine echo instructions with two prior compression
techniques: procedural abstraction and IBM’s CodePack.

Categories and Subject Descriptors: D.3.4 [Processors]:
Compilers
General Terms: Algorithms, Design, Performance.
Keywords: Compression, Code Size Optimization, Echo In-
structions

1. INTRODUCTION
Embedded systems are almost always cost and space con-

strained. Rather than seek raw performance, a successful
embedded system is typically a compromise between perfor-
mance and the amount of resources (power, memory, space)
required. Many embedded systems now include programmable
components, such as processors, to run complex or perfor-
mance insensitive tasks. Programmability comes at a cost:
a program must be stored in the system, which consumes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’03, Oct. 30–Nov. 1, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00.

valuable space.
Even chips that have traditionally been in the domain of

ASICs are now including programmable elements. For exam-
ple, the digital controller ASIC from the HP DeskJet 820C [22]
has three major components: a data path implemented in
standard cell, a microprocessor that handles control func-
tions, and ROM to store the microprocessor’s code. On this
chip, the data path is dominant because it is essentially an
ASIC design, but the ROM still consumes 14% of the total
die area. The ROM requires almost as much area as the mi-
croprocessor itself. If the designers wanted their chip to be
programmable after fabrication (using Flash memory), the
area required to store the program would increase to 25%.

As embedded processors become faster and more capable,
more functionality will migrate into software and firmware
based solutions. Increased functionality eases the design pro-
cess, but it also results in larger and more complex programs
that must be stored on chip. By developing techniques to re-
duce the area required to store programs, we can reduce the
area required for the system, which results in lower overall
cost.

One way to reduce the amount of area required for a pro-
gram is to compress the executable. This reduces the code
size and thus the amount of memory needed. A number of
techniques have been developed to reduce the size of executa-
bles [26]. Code compression is a variant of the more general
problem of data compression, but compressing code presents
some unique difficulties:

• Random Access: In audio compression, for example, the
decompressed data is a stream that is usually consumed
from beginning to end. Programs are quite different - a
program can execute any path through its control flow
graph. We must decompress the instructions on the
chosen path; this means we need random access to the
decompressed code.

• Limited Resources: Embedded systems seek to mini-
mize the total amount of memory needed in the system.
Thus, our decompression algorithm should consume as
little temporary storage as possible. Any scratch space
required by the decompression algorithm is just more
memory that adds to the cost of the system. Specif-
ically, we cannot use traditional compression methods
and decompress the entire program before we run it.

• Low Overhead : Since we decompress instructions when
the processor needs them, decompression must be fast.
Because of the unpredictable nature of branches, it may
be difficult to know which instructions to decompress
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far in advance. If the decompressor is slow, the perfor-
mance penalty will make the technique unusable.

In this paper, we examine a new form of code compres-
sion using echo instructions [8] which are specially designed
for code compression. Echo instructions are executable in-
structions and a compressed representation (codewords) of
the instruction sequence at the same time. An echo instruc-
tion is a meta-instruction that indicates a sequence of instruc-
tions elsewhere in the binary to be executed. When an echo
instruction is executed, the sequence of instructions that it
refers to is executed instead. In this paper, we extend the idea
of echo instructions to include more complex semantics, we
evaluate the effectiveness of echo instructions with detailed
simulation, and we compare the effectiveness of echo instruc-
tions against other code compression techniques. Specifically,
the contributions of this paper are:

• We provide an introduction to the echo instructions pro-
posed in [8], and extend the echo instruction to include a
more complex echo ability, one based on bitmasks. Our
new bitmask echo instruction relaxes the original echo
instruction’s requirement that code sections be exactly
identical, thereby exposing opportunities for additional
savings.

• We perform the first architectural implementation and
evaluation of the echo instruction. This allows us to
perform detailed cycle level simulation of the echo in-
struction and to measure the performance impacts. In
addition, we examine register allocation and instruction
scheduling to allow more aggressive echo factoring.

• We compare the effectiveness of our extended echo in-
structions with the techniques of procedural abstrac-
tion [7] and CodePack [10, 17]. In addition, we examine
the effects of applying multiple compression schemes.

The rest of the paper is organized as follows. In Section 2
we discuss related code compression work, including prior
work on echo instructions. We then dive into a more detailed
look at the echo instruction and describe our extensions in
Section 3. In Sections 4 and 5 we discuss the architecture
and compiler modifications necessary to support echo instruc-
tions. We then present an evaluation of our techniques and
explore the effects of combining different techniques in Sec-
tion 6. Finally, we conclude in Section 7.

2. RELATED WORK
In this section we describe prior related work, which we

classify into three categories: compiler optimizations to re-
duce code size, hardware techniques to reduce code size, and
techniques that rely on both hardware and compiler support.
First we summarize a few important attributes of code com-
pression.

2.1 Three Attributes of Code Compression
The standard metric for compression is compression ratio,

which is defined as compressed size
original size

. Thus, lower compression
ratios are better. The idea behind most code compression
techniques is to replace large repeating code sequences with
smaller place holders referring to the original code sequence,
resulting in a smaller executable. There are three attributes
that coarsely define how a code compression technique works:

• Codewords: A codeword is small place holder for a
larger code sequence. For example, if two identical sec-
tions of code are found, we can store a single copy, and
replace both code sections with a unique codeword that
refers to the single stored copy. Codewords are typically
variable-length bit sequences. Procedure call instruc-
tions and our echo instructions can also be considered
as codewords.

• Granularity : Code compression can be performed at
different scales. For example, instructions can be com-
pressed by finding similarities in their encodings (at the
level of bits) all the way up to finding similarities at
the level of procedures. More precisely, we say that
the granularity of a technique is the size of the code se-
quences that are replaced with shorter codewords. Echo
instructions exploit similarities at the basic block level.

• Storage: The mapping from codewords back to code
sequences is necessary during decompression, and this
mapping must be stored somewhere. Mappings can be
kept in external data structures or specialized hardware.
Echo instructions embed the mapping in the code itself.

2.2 Compiler Optimizations to Reduce Code
Size

There have been several efforts to reduce code size through
the use of classical compiler optimizations such as strength
reduction, dead code elimination, and common subexpression
elimination [4, 7].

The most effective compiler optimization for reducing code
size is Procedural Abstraction [25, 14, 20]. Procedural ab-
straction is the opposite of procedure inlining: first proce-
dures are created to represent each redundant code sequence,
and then each redundant code sequence is converted into a
call to the new procedure. The primary benefit of procedural
abstraction is that no special hardware is required, unlike the
techniques described below. On the other hand, procedural
abstraction results in extra call and return instructions which
must be executed in addition to the code that was abstracted
out.

Procedural abstraction operates on the granularity of basic
blocks. The codewords are procedure call instructions, and
the dictionary is stored in the program itself: each newly
created procedure is an entry in the dictionary.

It is noted in [4] that procedural abstraction can be com-
bined with classical compiler optimizations to achieve lower
compression ratios than either technique can achieve alone.
We extend this idea in our results section by showing that
classical compiler optimizations, procedural abstraction, and
hardware techniques can be combined to achieve even lower
compression ratios.

2.3 Compiler Techniques Requiring Hardware
Support

The effectiveness of compiler techniques to reduce code size
is bound by the limitations of the target instruction set. Nat-
urally, these limitations can be removed by modifying the in-
struction set. The compiler optimizations discussed in this
subsection depend on special instructions introduced for the
purpose of reducing code size.
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2.3.1 Fraser’s Echo Instruction
The name “echo” comes from Fraser who proposed the Se-

quential Echo instruction in [8]. Fraser used the sequential
echo instruction to compress bytecodes. The effects of echo
instructions on run-time performance were not studied in [8].

Sequential Echo instructions reduced the size of bytecode
programs by 33%. We see about 15% reduction in code size
on average. Although it is very difficult to compare compres-
sion ratios, we believe that this difference is largely due to
the difficulty of compressing register based languages when
compared to bytecodes.

Recursive echo instructions (echo instructions that refer to
other echo instructions) are another reason why Fraser’s ex-
periments resulted in lower compression ratios. Our initial in-
vestigation into recursive echo instructions indicate that the
benefits of recursive echos are unclear for a register-based
architecture. This results from the reduced number of re-
cursive echo opportunities in a register-based ISA. Recursive
echoes also introduce hardware complexity and execution per-
formance issues from the additional branching that occurs
with the recursion. Still, the use of recursive echoes is an
area that requires more evaluation.

2.3.2 Call Dictionary Instructions
The call dictionary instruction was presented by

Liao et.al,[21] is another ISA extension to enhance code com-
pression. They propose the following instruction:
CALD address, len. Their CALD instruction executes len in-
structions at the corresponding address in a hardware dictio-
nary. They build up the hardware dictionary by finding the
most common code sequences for a given program.

Choosing the code sequences, and an order for the code se-
quences in the dictionary requires some care, because CALD
instructions can execute any substring of the dictionary. Sup-
pose we have a basic block that contains the instructions abc,
another basic block that contains the instructions bcde. If
we put the instructions abcde into our dictionary, we can re-
place all the instructions in each basic block with single CALD

instructions: the first becomes CALD 0 3, and the second be-
comes CALD 1 4.

The call dictionary approach is different from our approach:
for storage, echo instructions refer to the main instruction
stream instead of a special dictionary as is used for the CALD

instruction.

2.3.3 Variable Width ISA Compression
Another way to reduce code size is to support variable in-

struction widths, and allow programs to switch between the
different widths during execution. Examples include dual-
mode instruction sets, such as the ARM Thumb [24] and
MIPS16 [12], where 32-bit instruction sets and 16-bit instruc-
tion sets are defined, and a program can switch between the
two instruction sets with a special instruction. A 16-bit in-
struction set reduces the number of bits available for immedi-
ate fields and register names, so additional 16-bit instructions
will typically be needed when converting instructions from
32-bit to 16-bit. Executing these additional instructions de-
creases performance.

Another approach is to generate a tailored ISA for the pro-
gram that will execute on the embedded processor [15]. A
tailored ISA is a CISC-like instruction set encoding specifi-
cally designed to minimize the size of a single program. To
generate a tailored ISA, the compiler uses the fewest num-

ber of bits in each instruction encoding possible to satisfy the
program’s needs. For example, if the program uses no more
than sixteen integer operations, then four bits will be used
for the integer opcode. Similarly, if all the instructions in the
program write to one of seven registers, then three bits will
be used to encode the destination register. The compiler for a
tailored ISA system produces two outputs: a binary written
in the tailored ISA, and a HDL description of the decoder
for the embedded processor. The tailored ISA approach pro-
duces compressed binaries that run with low overhead, but
the ability to specify custom decoder logic is required, and
additional area is also required by the custom decoder logic.

2.4 Hardware Techniques to Reduce Code Size
The natural next step from compiler techniques to reduce

code size is to introduce special hardware to assist with de-
compression. The availability of dedicated decompression
hardware reduces decompression overhead, which makes more
complex compression techniques feasible. While compression
schemes that rely on hardware decompressors can achieve re-
markable compression ratios, an important consideration is
the complexity of the decompression hardware.

2.4.1 Dictionary Compression
Lefurgy et. al propose a form of dictionary compression [18]

where identical code sequences are identified, and each occur-
rence is assigned a variable-length codeword based on the fre-
quency of occurrence: more frequently occurring instruction
sequences are assigned shorter codewords. A hardware dic-
tionary is maintained that maps from codeword back to the
original instruction sequence. After compression, branch tar-
gets can be modified so that they calculate addresses within
the compressed code address space. This enables instructions
to be fetched from the compressed memory directly without
a data structure to map from native virtual address space to
the compressed instruction addresses.

Compressed code is stored at all levels of the memory hi-
erarchy, including the instruction cache. Codewords align to
4-bit boundaries, so the processor must be modified to fetch
on 4-bit boundaries, and branch offsets must be modified to
account for code stored on 4-bit boundaries. This modifica-
tion has the side effect of reducing the range of branches.

2.4.2 CodePack
CodePack [11, 10] is a code compression method developed

by IBM for use in the PowerPC 405 processor. CodePack
divides each 32-bit instruction into two 16-bit halves, which
are then compressed down to two separate variable-length
codewords. Two dictionaries are maintained to map from
codewords back to 16-bit instruction halves - one dictionary is
for the low 16 bits of each instruction, and the other is for the
high 16-bits. An “index table” maps from native instruction
addresses to compressed instruction addresses.

The CodePack decompressor reads compressed instructions
from memory, and writes decompressed instructions into the
L1 instruction cache. When an L1 instruction cache miss oc-
curs, the CodePack decompressor first determines the com-
pressed instruction address corresponding to the miss address
by performing a lookup in the index table. The index table
is large, so a memory access is required for this step. Next,
a block of compressed instructions are read from memory, at
the address specified by the index table. For the results in
this paper, instructions within the compressed block are de-
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compressed in order, at the rate of one instruction per cycle.
See [17] for an in-depth discussion of CodePack.

CodePack operates at the granularity of 16-bit halves of in-
structions. The codewords are variable-length bit sequences,
and the dictionary is maintained in hardware.

2.4.3 Large Block Based Compression
More advanced compression techniques such as arithmetic

coding are typically used in situations where random access to
the decompressed data is not required. However, efforts have
been made to use these compression algorithms for code com-
pression [13, 19]. The idea is to split the program into blocks,
and apply the compression technique to each block. When
instructions from a compressed block are required, the entire
block is decompressed sequentially, and stored in a cache.
Choosing a block size is difficult: compression algorithms
work best on large blocks, but cache size and access time
increase with block size. In addition, these complex compres-
sion techniques require more complex decompressors, which
results increased time and space overhead.

3. ECHO INSTRUCTIONS
In most programs there are common sequences of instruc-

tions that appear in different sections of the code. The idea
behind the echo instruction is to compress these repeating se-
quences of instructions by “echoing” existing code sequences
in the program. If two sections of code are found to be the
same, there is no reason to include both. Instead, we can
replace the second copy with a pointer to the first. The echo
instruction provides a way for us to represent these pointers
in the program.

3.1 Sequential Echo
The basic echo instruction as proposed by Fraser [8] rep-

resents pointers to other code sections with executable byte-
codes. As the name implies, sequential echoes refer to con-
tiguous sequences of instructions. The sequential echo in-
struction tells the fetch unit where the duplicate instructions
can be found, and how many duplicate instructions need to
be executed.

In this way, sequential echo instructions are like lightweight
procedure calls: they cause the processor to jump to the tar-
get location, execute the desired code sequence, and return
to the call site. However, unlike real procedure calls, return
instructions are not necessary when using echo instructions.
Return instructions are not necessary because each echo in-
struction always refers to a fixed number of instructions, so
the processor automatically returns after the indicated num-
ber of instructions has been executed.

This new form of compiler directed dictionary compression
is similar to procedural abstraction (discussed in Section 2),
except that it is not necessary to create a new procedure (with
a return instruction) for each redundant code sequence. Echo
instructions provide the ability to branch to a given location
in the program, execute a substring of the instructions from
that location, and then return to the instruction following
the echo. The lightweight nature of echo instructions enables
us to take advantage of these code similarities with very low
overhead.

Sequential Echo - echo len, br-off: This echo instruc-
tion has two fields: a counter len and a branch offset. When
executed, an echo instruction jumps to the branch target, ex-

ecutes the next len sequential instructions, and then returns
to the echo site. For this study, we implement this echo as a
single 32-bit instruction with 5 bits for the counter len, and
a 21-bit branch offset.

3.2 Bitmask Echo
While the above echo instruction provides a mechanism for

lightweight procedural abstraction, we frequently find that
two code sections in a program are very similar, but not ex-
actly identical, differing by a small number of instructions.
Perhaps the code performs the same function and the in-
struction scheduler has moved some other instructions into
the block, or perhaps the two sections perform different tasks
and happen to have some instructions in common. Either
way, we want to target these similar sections of code for com-
pression.

To enable this type of compression, we extend the echo in-
struction by allowing it to conditionally include instructions
based on a bitmask. In this way the echo instruction can now
pick and choose instructions to executed from a larger block
of code, which means we can replace any sequence of instruc-
tions with an echo to a superset of the those instructions.
With our bitmask extensions, echo instructions can refer to
subsequences of instructions in existing code sequences.

Bitmask Echo - echo mask, br-off: This echo instruc-
tion has two fields: a bitmask and a branch offset. Each bit
in the bitmask corresponds to an instruction at the branch
target: a one bit indicates that the corresponding instruction
is to be executed, and a zero bit indicates that the corre-
sponding instruction is not to be executed. The bitmask is
read from right to left, so a bitmask of 1101b (binary) indi-
cates that the first, third, and fourth instructions at the echo
target are to be executed; the second instruction will not be
executed.

We implement two forms of this Bitmask Echo instruction.
The first is implemented as a single instruction with a 10
bit bitmask, and a 16 bit branch offset. The second form is
implemented as two instructions. The first instruction carries
26 bits of bitmask, and the second instruction carries a 21 bit
branch offset. The second form allows larger and more distant
code sequences to be echoed, at the cost of an additional
instruction.

By replacing sequences of code with echo instructions that
refer to similar code elsewhere in the program, we achieve a
compression ratio of 85% (15% reduction in code size). In the
following Sections (4 and 5) we examine the architectural and
compiler issues with implementing these echo instructions.

4. IMPLEMENTING ECHO
To examine the effectiveness of the echo instruction, we

extend the Alpha ISA to include our echo instructions. The
Alpha is a RISC-based architecture not dissimilar to those
used in embedded systems, and there are significant compiler
and simulation infrastructures built for the Alpha ISA.

Our baseline architecture is a single issue in-order execution
core which includes a small branch target buffer with 2-bit
conditional branch predictors to provide the target address
of taken branches. We insert our new echo instructions into
the Alpha ISA by encoding them with some of the Alpha’s
unused opcodes. The echo instructions adhere to the branch
offset sizes defined by the Alpha ISA.
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// next_fetch_pc has already been incremented
// by 4 at this point

if sequential echo is active
if echo_data_register == 1
next_fetch_pc = echo_return_pc_register

else
echo_data_register--

else if bitmask echo is active
if echo_data_register == 1
next_fetch_pc = echo_return_pc_register

else
echo_data_register >>= 1
while( echo_data_register & 1 == 0 )

echo_data_register >>= 1
next_fetch_pc += 4

Figure 1: Pseudocode example to calculate the next
fetch PC when echo instructions are active.

We modified the SimpleScalar [2] simulator to read and ex-
ecute echo instructions to test our approach and to gather
our results. In Section 5, we describe our modifications to
the binary optimization tool Squeeze [7], where we compress
binaries by replacing redundant code sequences with echo in-
structions. Finally, we then run these compressed binaries
through our modified simulator to check for correctness and
to measure performance.

The architectural extensions necessary to support echo in-
structions are very minor. Two special registers are needed:
an “echo return PC” register, and an “echo data” register.
The echo return PC register contains the fall through PC of
the echo instruction, and the echo data register stores the
echo bitmask or the echo counter, depending on the type of
echo instruction executed. Only echo instructions require ac-
cess to these two registers.

The architecture treats echo instructions just like other
branch instructions. The first time an echo instruction is
encountered, there is a one cycle fetch delay to calculate the
target of the echo instruction. The target of the echo in-
struction is then inserted into the branch target buffer and
is always predicted as taken to avoid future echo fetch stalls.
The data field (len or bitmask) can also be stored in the
BTB entry, or if the timing of the design permits, these val-
ues can be read from the echo instruction as its bits are read
out of the instruction cache. The following logic is needed to
calculate the next fetch PC when an echo is active.

Figure 1 contains pseudocode to calculate the next fetch PC
when an echo instruction is active. When a sequential echo
instruction is fetched, we copy len from the echo instruction
to the echo data register. Every time an instruction is fetched,
we decrement the echo data register by one, and we increase
the next fetch PC by four (each Alpha instruction is four
bytes long). When the value in the echo data register equals
one, we set the next fetch PC to the value stored in the echo
return PC register.

When a bitmask echo instruction is fetched, we copy mask
from the echo instruction to the echo data register. Whenever
an instruction is fetched, we shift the echo data register right.
While the rightmost bit of mask is zero, we shift the echo
data register right, and increase the next fetch PC by four.
While the logic to perform this operation may seem complex,
it is very similar to the logic in a priority encoder, and it can

execute in parallel with other fetch logic. When the value in
the echo data register equals one, we set the next fetch PC to
the value stored in the echo return PC register. The problem
of fetching instructions when an echo is active is similar to
the problem of fetching instructions for a VLIW machine with
compressed encodings [3, 1].

Instead of introducing special registers and logic for the
execution of echo instructions, an alternative option is to use
a general purpose application customization architecture such
as DISE [5]. The semantics of echo instructions are very
simple, so it should not be difficult to implement them in an
application customization architecture.

To keep the implementation simple, we do not support re-
cursive echo instructions (that is, echo instructions that refer
to other echo instructions), or echo instructions that refer to
branch instructions. While there are likely to be benefits from
lifting these restrictions, these restrictions greatly decrease
the complexity of our architecture and compiler. Removing
these restrictions are topics of future research.

5. COMPILING FOR ECHO
We described our echo instructions and how they can be

efficiently implemented in an embedded machine - we now
address the problem of compressing binaries with echo in-
structions. We must find similar sections of code, and re-
place redundant code sequences with echo instructions. We
call this process “echo factoring.”

We implement our echo factoring algorithms in the
Squeeze [7] link-time optimizer. Squeeze is a framework for
code compression that employs a number of compiler tech-
niques to reduce code size. It is based on the Alto [23] link-
time optimizer. Squeeze reduces code size by aggressively
applying classical compiler analyses and optimizations. Ex-
amples of the optimizations performed by Squeeze include
redundant-code elimination, dead code elimination, and
strength reduction.

In addition to these traditional optimizations, Squeeze also
performs procedural abstraction (“code factoring”) as dis-
cussed in Section 2. In Squeeze, procedural abstraction is
done by identifying groups of identical basic blocks, building
a procedure that performs equivalently to one of the basic
blocks, and then replacing each identical block in the group
with a call to the new procedure. Standard call and return
instructions are used, so no hardware support is required.

In contrast to factoring with call and return instructions,
the bitmask echo instruction allows us to factor sections of
code that are similar, but not identical. Furthermore, we
take advantage of aggressive register renaming and instruc-
tion scheduling steps to expose hidden similarities in code.
For example, two sections of code may have the same data
flow graphs, but they might use different register names. Per-
forming echo factoring with these degrees of freedom requires
a new set of compiler steps. First we need to locate similar
blocks of code. Next, we need to modify the instructions in
the blocks so they are actually similar. Afterwards, we can
choose which blocks should be factored and apply echo fac-
toring. In addition, we can optimize our selection of blocks to
be factored based on profile information. Each of these steps
is explained in detail.
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5.1 Guiding the Selection: A Similarity Metric
We need an efficient way to calculate the number of in-

structions that can be eliminated when echo factoring a pair
of blocks. Thus, to guide factoring we have created a Sim-
ilarity Metric between two blocks. The Similarity Metric is
defined as the number of instructions similar between two
blocks, such that one of the blocks can be removed and re-
placed by an echo to the other block.

To measure the similarity of a pair of blocks, we must pair
instructions in one block with identical instructions in the
other block. Specifically, we must identify the longest con-
tiguous sequence of instructions in one block that appears
as a (possibly discontinuous) subsequence of the instructions
in the other block. This contiguous sequence of instructions
can be replaced by an echo that refers to the subsequence of
instructions in the other block.

This calculation is done with a simple O(N3) algorithm,
where N is the number of instructions in the basic blocks.
We find that the average value of N is 3.8 for the embedded
applications we consider. Furthermore, the value of N can
be set arbitrarily low, because we can reduce the number
of instructions in basic blocks by splitting them. However,
splitting basic blocks will result in worse compression ratios,
because fewer instructions will be available when looking for
similarities.

To calculate the similarity metric between two blocks, we
consider every possible starting position for echo factoring in
both blocks. We will call the block that will be rewritten with
an echo instruction the source block sbbl, and we will call
the echo target block tbbl. For every pair of instructions
(sstart, tstart), where sstart is an instruction from sbbl

and tstart is an instruction from tbbl, we perform a linear
scan of the instructions after sstart and tstart, and count
the number of contiguous instructions in sbbl after sstart

that also appear as a subsequence of the instructions in tbbl

after tstart. Two instructions are considered identical if
their encodings are identical: opcode, registers, and immedi-
ate fields must all match. By iterating over all possible echo
factorings, we ensure that we find a maximal matching. The
number of matches is the similarity metric between these two
blocks.

This simple algorithm is sufficient because an echo instruc-
tion always replaces a contiguous sequence of instructions,
and the echo instruction points to a sequence of instructions
(not necessarily contiguous because of the echo bitmask in-
struction) in the program. We measure similarity in this way
because this metric is directly related to the number of in-
structions we can eliminate when echo factoring: we can re-
place the contiguous sequence with an echo that refers to a
subsequence of instructions in the other block.

5.2 Schedule and Rename for Echo
To increase the number of instructions that can be elimi-

nated by echo factoring, we rename registers and reschedule
instructions to make two basic blocks more similar to each
other. To reduce the running time of these operations, we
employ a technique similar to the fingerprinting technique
described in [7]: before performing any optimizations for a
pair of basic blocks, we count the number of instructions with
identical opcodes. If this count is less than two, we will not
attempt any optimizations (an echo instruction will not re-
duce code size if it replaces fewer than two instructions). This
filter prevents us from applying these expensive optimizations

add $3 $4 > $5

echo 11101 jbbl

Step 2: Find unmatched instructions with similar dataflow

Step 3: Try to reschedule and rename to match instructions

Step 4: After rescheduling and renaming

Step 5: Rewrite sbbl with echo

1

1

1

1

0

sub $3 $12 > $7

add $3 $4 > $5

add $1 $2 > $3

mul $9 $10 > $11

add $1 $2 > $3

add $3 $4 > $5

sub $3 $6 > $7

div $11 $2 > $1

mul $9 $10 > $11

sbbl tbbl

sub $3 $12 > $7

add $3 $4 > $5

add $1 $2 > $3

mul $9 $10 > $11

add $1 $2 > $3

add $3 $4 > $5

sub $3 $6 > $7

div $11 $2 > $1

mul $9 $10 > $11

sbbl tbbl

sbbl tbbl

sub $3 $6 > $7

add $3 $4 > $5

add $1 $2 > $3

mul $9 $10 > $11

add $1 $2 > $3

add $3 $4 > $5

sub $3 $6 > $7

div $11 $2 > $1

mul $9 $10 > $11

add $1 $2 > $3

add $3 $4 > $5

sub $3 $6 > $7

div $11 $2 > $1

mul $9 $10 > $11

sbbl tbbl

add $1 $2 > $3

add $3 $4 > $5

sub $3 $6 > $7

div $11 $2 > $1

mul $9 $10 > $11

sbbl tbbl

Step 1: Find contiguous sequence in sbbl, and 
             the matching subsequence in tbbl

mov $12 > $6

sub $3 $6 > $7

add $1 $2 > $3

mul $9 $10 > $11

mov $12 > $6

mov $12 > $6

Figure 2: Rescheduling instructions in sbbl, then
rewriting sbbl with an echo instruction
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to pairs of basic blocks that could not possibly benefit from
them.

We simplify the problems of register renaming and instruc-
tion rescheduling by modifying the problems. Instead of
trying to rename and reschedule to produce the maximum
number of identical instructions, we design our algorithms to
increase the number of instructions that can be eliminated
by echo factoring. To do this, we use the similarity met-
ric described above to first determine the maximum number
of instructions that can be removed by echo factoring, and
we “lock” these instructions. Next, we greedily rename reg-
isters in unlocked instructions, and reschedule unlocked in-
structions to increase the number of instructions that can be
removed.

Figure 2 shows the process of echo factoring basic block
sbbl to tbbl, with instruction rescheduling and register allo-
cation. In the first step, we identify instructions in sbbl that
can be replaced with an echo instruction that refers to tbbl.
In step 2, we identify unmatched instructions in tbbl with
similar dataflow to unmatched instructions in sbbl. In step
3, we realize that the scheduling of the last two instructions
does not matter, and we rename $12 to $6 to make the two
subtraction instructions identical. Note that a move instruc-
tion must be inserted at the beginning of sbbl to preserve the
dataflow of sbbl. Step 4 shows the instructions that will be
factored after instruction rescheduling and register renaming.
Finally, in step 5, we replace the factored instructions with
an echo that refers to tbbl.

Note that we only apply our renaming and rescheduling op-
timizations to sbbl, which contains the instructions that will
be replaced with an echo. Because multiple echoes can refer
to the same set of instructions, if we renamed or rescheduled
instructions in tbbl, we might invalidate other echoes that
refer to tbbl.

While Squeeze includes a register renamer, it was designed
for procedural abstraction, not for echo factoring. The differ-
ence is that procedural abstraction operates on basic blocks
that are exactly identical, while echo factoring operates on ba-
sic blocks that are partially identical. This difference makes
register renaming for echo factoring difficult. We use a greedy
algorithm to select candidates for renaming: whenever we
identify a pair of instructions that can be made identical
through renaming, we examine the benefit from performing
the renaming.

Squeeze also includes an instruction scheduler, although it
is used for “traditional” instruction scheduling purposes. We
use the dependence analysis routines to determine when we
can reschedule instructions to increase the number of instruc-
tions that can be eliminated with echo factoring. It should be
noted that the techniques we use here are just coarse heuris-
tics to an optimal rescheduling and renaming algorithm. To
generalize, the problem of increasing echo savings in two basic
blocks reduces to the problem of finding a subgraph isomor-
phism of two data flow graphs. While subgraph isomorphism
is known to be NP-Complete [9], approximation algorithms
may be of use. In addition, the data flow graphs are small,
which may make subgraph isomorphism algorithms tractable.
Exploring these possibilities may be an area of future re-
search.

5.3 Choosing Basic Blocks to Factor
The goal of echo factoring is to choose which basic blocks

should be factored, and to do this we must choose an order

in which to factor them. For this, we build a block similarity
graph. Each node in the graph represents a basic block, and
each directed edge (B1,B2) represents the similarity metric
described above, which is the number of instructions that
can be eliminated by factoring B1 to B2.

To construct the block similarity graph, for each basic block
B1 we use our similarity metric to calculate the number of in-
structions that can be eliminated by rewriting a contiguous
sequence of instructions in B1 with an echo instruction that
refers to B2, for all basic blocks B2. We simulate instruction
reordering and register allocation as described above in Sec-
tion 5.2 on B1 to eliminate as many instructions as possible.
We do not simulate instruction rescheduling or register allo-
cation on the target B2, as these operations could invalidate
other factorings that target B2.

Register allocation may require additional move instruc-
tions to split or join the new register names for the basic
block; these move instructions are taken into account when
calculating the number of instructions that can be elimi-
nated by factoring B1 to B2. Note that changes to instruction
scheduling and register allocation are not committed at this
point, because we are only calculating the similarity metric –
the potential savings for each pair of basic blocks in this step.

Next, we use a greedy algorithm to choose the order in
which basic blocks are factored. We sort the edges in the
block similarity graph, and process them from highest to
lowest potential savings. Ties are broken by choosing edges
where the echo target has the highest in-degree in the block
similarity graph. This makes it more likely that multiple echo
instructions will target the same basic block, which improves
instruction cache performance.

Finally, we begin factoring blocks. For each edge from B1

to B2, we first perform instruction rescheduling and register
allocation on B1 as necessary. Next, we replace the source
instructions in B1 with an equivalent echo instruction target-
ing B2, and add any move instructions needed to join or split
register names above or below the newly added echo instruc-
tion. After factoring, the target B2 is locked, preventing any
alterations to it, because any changes to B2 will invalidate the
echo instruction in B1. Thus B2 may be the target basic block
of other echo instructions, but it may not be the source. We
continue factoring blocks until no reductions in code size are
possible.

5.4 Profile Guided Compression
Echo factoring results in two performance degrading effects:

increased BTB pressure (because echo targets are stored in
the BTB), and increased dynamic instruction count. To re-
duce the impact of these effects, we use profile information
to guide our selection of blocks to factor, as described in [6].
The idea is to disable factoring of frequently executed blocks.
To determine which blocks qualify as “frequently executed,”
we set a threshold θ, 0.0 ≤ θ ≤ 1.0, which specifies the frac-
tion of dynamically executed instructions that we consider
“frequently executed.”

The weight of a basic block is the number of instructions in
the block multiplied by the number of times the basic block is
executed. Viewing θ as a percentage, we disable factoring of
the θ% most heavily weighted blocks in the program. Excep-
tions are made for blocks that are executed a small number
of times (50): these infrequently executed blocks will always
be factored if reductions in code size result.

To be more precise, let the freq of a basic block be the
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Benchmark Size (kb) Instr Exe CPI I-Cache

adpcm 45.3 1244 M 1.3097 310
epic 84.9 2923 M 1.5142 851
gsm 84.3 354 M 1.1791 1017
mpeg2dec 87.1 223 M 1.3427 739
mpeg2enc 131.5 1785 M 1.2607 4288
rasta 250 26 M 1.6953 2603

Table 1: Statistics for the baseline optimized binaries.
These were generated by performing classical code
size reduction techniques such as dead-code elimina-
tion using Alto. All results are normalized to these.

number of times a basic block is executed, the weight of a
basic block be as described above, and total weight be the
weight of all the basic blocks in the program. We consider
all the basic blocks in the program in decreasing order of
execution frequency, and we search for a “cut-off” execution
frequency F where the total weight of all blocks executed at
least F times is responsible for at least θ% of the weight of
all the basic blocks in the program.

Basic blocks that are executed at least F times are consid-
ered frequently executed, and are not factored. By setting θ
to 0.6, we reduce the performance degrading effects of echo
instructions without sacrificing compression ratio. The use of
profile guided compression results in 2% performance increase
on average for the benchmarks we consider.

6. RESULTS
In this section we present the effectiveness of echo instruc-

tions in terms of compression ratio and execution perfor-
mance. We used a portion of the Mediabench [16] suite
of benchmarks to evaluate the performance of echo instruc-
tions. Compilation was done with the GNU C compiler ver-
sion 2.7.2.2 with compiler optimizations enabled (-O2, no loop
unrolling or inlining). While GNU C does performance opti-
mizations, it does not do serious optimizations to reduce the
size of the binary. For this reason, we refer to these binaries
as Unoptimized in all of the following graphs.

We take the GNU compiled Mediabench binaries and run
them through Alto (the binary optimizer for Squeeze) with
all optimizations except procedural abstraction enabled. The
binary optimizations performed by Alto are traditional well
documented optimizations, such as redundant-code elimina-
tion,
unreachable-code elimination, dead-code elimination, strength
reduction, and peephole optimizations. We use these results
from the unmodified Alto optimizer as our Baseline results.
The performance, size, and cache statistics can be seen for
the baseline binaries in Table 1. In this Table, the first col-
umn, size, is the size of text segment of the baseline binary
(from which all other compression ratios will be calculated).
The next column is the total number of dynamic instructions
committed for each benchmark. The column labeled CPI is
the average number of cycles per committed instruction, and
finally I-Cache is the total number of instruction cache misses
in the entire execution. All other results in this paper are nor-
malized to the size and speed of these highly optimized Alto
binaries. On average, the baseline binaries are 25.2% smaller
than the unoptimized binaries, and they run 5.6% faster.

For the first result we run the binaries through Squeeze [7],
with procedural abstraction enabled. Squeeze uses the above

I Cache
1k fully associative, 32 byte blocks, 1
cycle latency

D Cache
1k fully associative, 32 byte blocks, 1
cycle latency

L2 Cache none

BPred
128-entry bimodal predictor, 1 cycle
misprediction latency

BTB 128-entry direct-mapped BTB

Issue
in-order issue of up to 1 operation per
cycle

Ld/St Ordering
load/store queue, loads may execute
when all prior store addresses are
known

Registers 32 integer, 32 floating point

Units
1-integer ALU, 1-load/store unit, 1-
FP adder, 1-integer MULT/DIV, 1-FP
MULT/DIV

Memory 90 cycle memory access latency

VM
8K byte pages, 30 cycle fixed TLB miss
latency after earlier-issued instructions
complete

Table 2: Architecture parameters used for all simula-
tions. We modeled a single issue in-order embedded
system with architecture features and latencies sim-
ilar to Intel’s Xscale core.

optimizations from Alto adding in procedural abstraction.
We then created a modified version of Squeeze that performs
echo factoring, and report code compression ratios for the
text segments of these processed binaries.

We used the SimpleScalar/Alpha 3.0 toolset [2], a suite of
functional and timing simulation tools for the Alpha ISA,
to evaluate the performance impact of the code compression
techniques we consider here. To accomplish this, we modified
SimpleScalar to execute the echo instructions in our new bi-
naries. We modeled a single issue in-order embedded system
with architecture features and latencies modeled after Intel’s
Xscale core. These parameters are seen in Table 2.

6.1 Comparing Echo Instructions to Compiler
Procedural Abstraction

The first thing we examine is the effectiveness of the echo
instruction as opposed to software-only based procedural ab-
straction. Figure 3 shows the compression and performance
achieved through the use of echo instructions compared to
link-time procedural abstraction as proposed in [7]. The first
bar on the graphs is the performance and compression ratio
of the binary as generated by gcc (discussed above). The
bars labeled Proc show that procedural abstraction by it-
self results in a 94.3% compression ratio in comparison to
our already Alto optimized baseline. In comparison, echo in-
structions achieve a compression ratio of 84.8%. One thing to
note is that there is almost no additional saving in applying
both procedural abstraction and echo instructions in combi-
nation. Procedural abstraction with echo instructions yields
a compression ration of 84.5%.

In terms of performance, we found that echo factoring can
result in better performance in some instances, since echo
factoring results in a smaller instruction cache footprint. In
none of the benchmarks is the performance of the system
with echo instructions worse than the baseline by more than
3.7%. For the mpeg decoder, performance actually improves
by 9.6%. These results show that, for the benchmarks we con-
sider, echo instructions provide an additional 9.5% reduction
in code size at almost no performance cost.
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Figure 3: Compression ratio and performance com-
pared to the optimized baseline binaries, which rep-
resents 1 on the graphs. The baseline binaries are
derived from applying traditional link-time binary
optimizations to the programs. Results are shown
using no optimizations, link-time procedural abstrac-
tion, echo instructions, and procedural abstraction
and echo instructions together.

6.2 Profile Guided Code Compression
Figure 4 shows the impact of profile guided code compres-

sion on compression ratio and performance. The same inputs
are used for profile generation and performance runs.

The weight of a basic block is the number of instructions in
the block multiplied by the number of times the basic block
is executed. Viewing θ as a percentage, we disable factoring
of the θ% most heavily weighted (executed in the profile)
blocks in the program. Exceptions are made for blocks that
are executed a small number of times. For these results, all
blocks executed 50 or fewer times will always be factored if
reductions in code size are possible.

Low values of θ result in more factorings (which results in
smaller code size) at the cost of increased running time, while
high values of θ result in fewer factorings (and thus larger
code size), with decreased running time. For the benchmarks
shown, we find that setting θ to 0.6 provides good results -
running time decreases by 2%, at the cost of a 0.5% increase
(loss) in compression ratio.

6.3 Relative Effectiveness
Figure 5 shows the percentage of instructions removed by

each procedural abstraction technique in Squeeze for the
Proc+Echo results as shown in Figure 3. The bottom three
bars show the effectiveness of existing abstraction techniques
in Squeeze.

“Suffix merging” is a form of partial redundancy elimina-
tion: this optimization rearranges code to eliminate redun-
dancies. For each basic block B, the longest common suffix
of the instructions in each predecessor of B is found, and these
common instructions are removed from each predecessor, and
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Figure 4: Compression ratio and performance for
profile-guided code compression. Results are com-
pared to the same baseline in the other graphs. Re-
sults are shown for various values of θ, as described in
section 5.4. Increasing θ results in less compression.
Note that infrequently executed blocks will always be
factored if reductions in code size result, regardless
of the value of θ
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Figure 5: The percentage of instructions removed by
each compression technique in Squeeze. The tech-
niques are applied in order from top to bottom -
bitmask echo instructions expose many more code
redundancies in each benchmark
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they are moved to the beginning of B.
In Squeeze, there are special flavors of procedural abstrac-

tion for blocks that save and restore registers for each func-
tion. These routines work by generating special procedures
that save and restore all the registers. Then the code se-
quences in basic blocks that save and restore registers at the
beginning and end of each procedure are replaced with calls to
the special procedures that save and restore all the registers.

There is also a special routine that abstracts blocks con-
taining return instructions. These blocks are handled spe-
cially because return instructions can be factored by taking
advantage of the return instruction at the end of the proce-
dure created during abstraction.

The “sequential echo / procedural abstraction” bar shows
the effectiveness of the abstraction routines which we modi-
fied to use sequential echo instructions instead of procedural
abstraction. These are all code factoring optimizations that
could be captured with either procedural abstraction or se-
quential echo instructions. To perform this sequential echo
optimization we first move all control flow instructions into
their own basic blocks. Basic blocks that do not contain con-
trol flow instructions are then organized into buckets of iden-
tical basic blocks. Finally, one basic block from each bucket
is arbitrarily designated as the representative, and all other
basic blocks in the bucket are rewritten with sequential echo
instructions that refer to the representative. Effectively, this
is procedural abstraction in its simplest form, implemented
with sequential echo instructions instead of call/return in-
structions.

The “bitmask echo” bar shows the relative effectiveness of
echo factoring with bitmask echo instructions. As expected,
the results show that bitmask echo instructions enable fac-
toring of code sequences that are not possible with sequential
echo instructions, or standard procedural abstraction tech-
niques. For some benchmarks (rasta and mpeg2enc), bitmask
echo instructions double the number of instructions removed.
Note that we perform echo factoring with bitmask instruc-
tions after all other code size optimizations, so our bitmask
echo instructions are actually exposing more code redundan-
cies in each benchmark, and not just “stealing” redundancies
from other code size optimizations.

6.4 Comparing Echo Instructions to CodePack
We modified the CodePack compressor written by

Lefurgy [17] to support the Alpha ISA, and we integrated
it into Squeeze. We then ran the CodePack compressor im-
mediately before outputting the modified binary. We simu-
lated the implementation of CodePack as described in Sec-
tion 2.4.2.

Figure 6 shows the compression and performance achieved
through the use of a CodePack compressor. The compression
results show that the use of a CodePack compressor produces
smaller binaries compared to echo instructions. However,
these techniques can be combined to produce an additional
6.8% decrease in compression ratio (in comparison to the use
of CodePack alone), and 1.1% increase in performance. Per-
formance improves when using echo instructions in combi-
nation with CodePack because the CodePack decompressor
must be run whenever an instruction cache miss occurs, and
reductions in code size tends to result in fewer instruction
cache misses.

It is commonly assumed that applying a compression tech-
nique to data that has already been compressed with a differ-
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Figure 6: Compression ratio and speedup compared
to the optimized baseline binaries, which represents
1 on the graphs. The baseline binaries are derived
from applying traditional link-time binary optimiza-
tions to the programs. Results are shown using no
optimizations, echo instructions, CodePack, and echo
instructions and CodePack together.

ent compression technique will not result in additional sav-
ings, but our results show that combining compression al-
gorithms can result in even lower compression ratios when
the techniques operate at different granularities. Specifically,
echo instructions operate on redundant code sequences at
the basic block level, while CodePack compresses redundant
halves of instructions. Since CodePack is able to find redun-
dancies at a much smaller granularity than our echo optimiza-
tion, additional savings result from the use of the two tech-
niques together. Specifically, CodePack can compress very
short code sequences (sequences of one instruction or less),
while echo can only compress longer code sequences (at least
two instructions). On the other hand, echo instructions are
superior to CodePack for long code sequences, since a se-
quence of up to 32 instructions can be replaced with a single
sequential echo instruction.

7. SUMMARY
This paper examined code compression with echo instruc-

tions. Echo instructions are an executable form of code com-
pression that uses the main instruction stream for the com-
pression storage. Echo instructions execute subsequences of
instructions from other locations in the instruction stream.
Given a highly optimized binary, our results show that tradi-
tional software based procedural abstraction achieves a 94.3%
compression ratio, while the use of echo instructions achieves
a 84.5% compression ratio.

In addition, we evaluate the use of echo instructions with
CodePack [10]. CodePack achieved a 70.0% compression ratio
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on our optimized binaries, and CodePack with echo instruc-
tions resulted in a 63.2% compression ratio. Typically, com-
bining compression algorithms does not result in additional
savings, but we are applying two compression algorithms that
operate at different granularities, so they compress different
portions of the same data.

In terms of execution time, echo factoring results in 1.1%
performance improvement on average. We reduce the per-
formance impacts of echo instructions by treating them as
branches and inserting them into the branch target buffer,
and by using profile information to disable compression for
frequently executed blocks.

Given that (1) performing the echo optimization at link-
time is a fairly simple optimization, (2) the architectural mod-
ifications necessary to support the echo instruction are minor,
and (3) they achieve 15.5% reductions in code size with no
loss in performance on average, echo instructions can be an
attractive option for code compression for some embedded
applications.
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