
 
 
 
 

Storage Assignment Optimizations through Variable 
Coalescence for Embedded Processors 

 
 Xiaotong Zhuang       ChokSheak Lau        Santosh Pande 

 
Georgia Institute of Technology 

College of Computing 
801 Atlantic Drive 

Atlanta, GA, 30332-0280 
{xt2000, chok, santosh}@cc.gatech.edu 

   

   

ABSTRACT1 
Modern embedded processors with dedicated address generation 
unit support memory access with indirect addressing mode with 
auto-increment and decrement. The auto-increment/decrement 
mode saves address arithmetic instructions. 

Liao et al [2][3] categorized this problem as simple offset 
assignment (SOA) problem and general offset assignment 
(GOA) problem, which involve storage layout of variables and 
assignment of address registers respectively proposing heuristic 
solutions. Later work [6][7] proposed improvements in the 
performance of Liao’s solution by undertaking program and 
storage transformations that affect access sequence.  

In this paper, we propose a new approach of variable 
coalescence, which can reduce both instruction segment and data 
segment size and improve the utilization of automatic address 
register modification. Variable coalescence combines been 
observed in terms of code and data size reduction, SOA and 
GOA cost reduction and dynamic cycle reduction. Variables not 
interfering with other (not simultaneously live at any program 
point) into the same memory location. Coalescing allows 
simplifications of the access graph yielding better SOA solutions 
or can perhaps lead to such a few uncoalesceable memory 
locations that GOA solutions for them are optimal. Moreover, it 
can reduce the program footprint both statically and at runtime 
(for stack variables) in terms of data segments. Variable 
coalescence is orthogonal to other solutions proposed; 
performing variable coalescence first and then solving the SOA 
or GOA problem with other techniques leads to excellent 
solutions. In this work, we have successfully applied it to both 
SOA and GOA problem. 
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The algorithms are incorporated into and evaluated on the 
commercial compiler provided by Motorola to boost code 
generation performance on the DSP 56k chip. Compared to 
previous approaches, variable coalescence with program 
reordering reduces SOA costs by 48% and GOA (2AR) costs by 
66% for Mediabench and SPEC benchmarks. Moreover, we 
show that our approach obtains theoretically optimal solution 
(zero cost) for the GOA problem in 87% of the cases with just 2 
address registers and in 94% of the cases with 3 address 
registers. 
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D.3.4 [Programming Languages]: Processors– Compilers, 
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Systems]: Real-time and embedded systems 
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1. INTRODUCTION AND RELATED 
WORK 

The rapid evolution in embedded processors and DSP 
architectures has raised new challenges for compilers to generate 
efficient and small footprint code for the ever-increasing 
demands of user applications. Reducing the code size also 
reduces the amount of memory traffic for instruction fetching 
and data fetching, which can further speed up the program 
execution. 

Most modern DSP architectures have specialized address 
generation units (AGU) to facilitate the memory address 
generation in different modes. The AGU normally provides 
simple address register (AR) operation (typically, plus or minus 
an immediate value or a value in offset register) in parallel with 
the memory access operation, so that the address register 
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operation is executed for free without dilating the clock cycle on 
the critical path. However, due to constraints on instruction size, 
traditional register-plus-offset addressing mode is either not 
supported (e.g. TMS320C25) or requires more instruction words 
(DSP56300). Therefore, transforming address arithmetic into 
auto-increment/decrement mode can help to generate compact 
and efficient code and speed up execution as well. 

Most modern DSP processors have at least 8 address 
registers. For example, the Sony pDSP chip and the Motorola 
DSP56300 processor each has 8 address registers. Starcore’s 
SC140 has 16 address registers. Analog Devices’ ADSP-21020 
has 8 address registers (32 bit) for data memory and 8 address 
registers for program memory (24 bit). Post modification is 
supported for all these chips. The hardware support shows the 
designers’ expectation for heavy usage of these instructions, 
however, the actual usage of them is still quite limited. In our 
experiments, we counted the number of auto-
increment/decrement instructions generated by GCC compiler 
retargeted for the Motorola DSP 56300 chip. For most 
benchmark programs, less than 3% of the generated address 
instructions make use of the auto-increment/decrement mode 
before our optimizations. Recent study [11] also shows that on 
some embedded processors up to 55% of operations could use 
address register operations to reduce cycle counts and code size. 
Therefore, significant opportunities exist for optimizing address 
register assignments.  

The storage assignment problem was first studied by Bartley 
[1] and Liao et al [2][3]. They identified the problem as two 
classes. The simple offset assignment (SOA) problem considers 
only one address register, while the general offset assignment 
(GOA) problem handles more than one address register. The 
problem is modeled as a graph and the objective is to find the 
maximum weight path cover (MWPC). Liao proved that finding 
the MWPC is NP-complete, and so heuristics are used to solve 
both SOA and GOA. Later, Leupers and Marwedel_[10] 
extended Liao’s work by proposing a Tie-break heuristic for 
SOA and a variable partitioning strategy for GOA to reduce the 
SOA and GOA costs. Atri, Ramanujam and Kandemir [12] 
further improved the heuristics by an algorithm called 
Incremental-Solve-SOA. Sudarsanam et. al. [5] studied the offset 
problem in the presence of auto-increment/decrement feature 
that varies from –l to +l with k address registers. Rao and Pande 
[6][7] attempted to reorder the memory access sequence (called 
program reordering) through algebraic transformations on the 
expression trees. The problem is formulated as seeking the least 
cost access sequence (LCAS). [13][14][15][16] talk about the 
problem of allocating address registers to array references using 
auto-increment/decrement mode. 

In this paper, we propose a different approach to first 
identify the webs or atomic variables, and then coalesce them 
aggressively into fewer memory locations. Our study shows that 
the access graph of the atomic variables is sparse, and 
coalescence can effectively reorganize them to generate simpler 
access sequences with high-weighted path covers. Besides, 
aggressive coalescence can significantly reduce the static and 
dynamic memory space requirements for both SOA and GOA 
problems. Another important feature of the coalescence 
algorithm is it can be combined with most previous approaches 
to further boost the performance. 

Our SOA solution gives a 33% (48% when combined with 
program reordering technique [6][7]) cost reduction and 24% 
data segment size reduction. For GOA problems, we show that 
through aggressive coalescence, over 87% of the procedures get 
optimal solutions (almost all intra basic block address register 
operation can be handled by auto-increment/decrement 
instructions) with only 2 address registers (ARs) and over 94% 
of the procedures get optimal solution with 3 ARs. In the case of 
2 ARs, our solution reduces GOA cost (please refer to next 
section for the definition of SOA and GOA cost) by 24% (66% 
when combined with program reordering [6][7]) compared to 
one of the classic GOA algorithms. The data segment size is 
reduced by 24%, while none of the previous approaches resulted 
in any data segment size reduction.  

The remainder of the paper is organized as follows: Section 
2 briefly introduces the SOA and GOA problem, Section 3 gives 
a motivating example for our approach, Section 4 talks about 
preliminaries, Section 5 presents terminologies and main results 
for variable coalescence, Section 6 is the overall framework, 
Sections 7 and 8 present the SOA and GOA algorithms, Section 
9 covers issues about global variables, Section 10 shows results, 
and finally, Section 11 concludes the paper. 

2. SOA AND GOA PROBLEM 
Offset assignment is the problem of assigning offsets 

(memory layout) to variables so that the number of address 
arithmetic instructions can be minimized by using auto-
increment/decrement modes of register indirect addressing 
instructions. For example, Figure 2a shows the memory layout 
for 6 variables (address grows upwards) and generated code 
corresponding to Figure 1.a—we assume one address register 
AR0, so it is a Simple Offset Assignment (SOA) problem. For 
the first instruction c=a+b, after accessing b, i.e. ADD *(AR0)-, 
we use auto-decrement to point AR0 to the memory location of 
variable c, thus saving one address register modification 
instruction (like ADAR—add to AR, and SBAR—subtract from 
AR). Thus, the problem of maximizing the use of auto-
increment/decrement instructions is to find a good memory 
layout for the access sequence (the order variables are accessed) 
such that explicit address modification instructions are (such as 
ADAR and SBAR) are minimized.  

Liao et al [2] modeled the problem of SOA by an undirected 
graph called access graph (AG), which is built from the access 
sequence. In Figure 1.a, we show the access sequence (below the 
code) for the 5-line code segment. Here, we assume that 
variables on the right-side of the equation must be loaded one-
by-one from left to right, then, after the evaluation, the result is 
stored into the left-side variable. For the time being, assume that 
all variables are stored in memory (in case they are not, access 
graph will show the order of only those accesses corresponding 
to memory accesses, i.e. load/stores). The access graph is shown 
in Figure 1.b. Each node is a variable. The edge weight 
represents the number of times the two nodes are accessed 
consecutively in the access sequence (the edge weight is 
statically estimated by the compiler by counting the number of 
transitions or could be built using profile information). The 
problem now becomes one of finding a maximum weight path 
cover (MWPC) [2] for the graph. The MWPC is a path cover (a 
path cover is one or several acyclic path passing through all the 
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nodes such that no node has more than two neighbors on the path; 
it can be directly converted into a linear memory layout 
sequence) that has maximal weight. The thick line in Figure 1.b 
shows one of the MWPC solutions. The weight of the MWPC is 
the number of address register modification instructions saved. 
The sum of the weights of all edges not on the MWPC is equal 
to the number of times address register modification instructions 
should be used, and this sum is called the SOA cost ([2] gives 
details on the SOA cost, intuitively, for uncovered edges, 
address register modification instructions must be inserted and 
the edge weights now represents how many times these 
instructions are executed).  

Earlier approaches [2][10][12] have shown the MWPC 
problem is NP-complete and tried to find a good path cover with 
a weight close to the MWPC. Also, program reordering [6][7] 
was used to modify variable access sequences through algebraic 
laws (like from a+b to b+a), such that the MWPC solution can 
be improved. But access graphs are dense and finding good 
graph-theoretic solutions to them are limited by the complexity  
(NP-completeness) of the problem. 

For General Offset Assignment (GOA) problem, the 
general approach is to assign each variable to an address register 
(AR), where a variable assigned to an AR uses that AR only. 
Then for all variables assigned to the same AR, the problem is 
solved as SOA. GOA cost is actually the sum of SOA costs for 
all address registers. For GOA, the access sequence for variables 
handled by one AR is derived from the all-variable access 
sequence but considering only the variables using that AR. For 
example, in Figure 1.a, if we have two address registers AR0 and 
AR1, {a,b,c} is handled by AR0 and {d,e,f} is handled by AR1, 
then the access sequence for AR0 is abcacaaccb, the access 
sequence for AR1 is defddf. 

As alluded previously, current techniques to solve this 
problem attempt to efficiently partition graph first (GOA 
problem) and then solve each sub-graph as SOA. But access 
graphs are dense and finding good graph-theoretic solutions for 
partitioning them (GOA) or for path cover (SOA) are limited by 
the complexity (NP-completeness) of the problem. This prompts 
our approach, which attempts to simplify the access graphs using 
memory coalescence of values. In the next section, we first 
illustrate the importance of our approach through an example. 

3. MOTIVATING EXAMPLE 
In Figure 1, we give an example to illustrate how our 

variable coalescence algorithm works and how it can reduce the 
cost when other methods fail. 

The code segment in Figure 1.a (taken from [6][7] with 
minor changes) contains 5 instructions. We assume this code 
segment is the entire program itself. In real programs, we need to 
do liveness analysis and variable renaming/coalescing either 
inside a whole procedure (for local variables) or inside a whole 
program (for global variables). 

The coalescence algorithm actually first separates values 
into atomic units called webs (explained in Section 4.2) [9] 
through variable renaming. A web is a du/ud chain closure of a 
variable and allows independent allocation of values in memory 
[9].  

 

(a) (b) 

(1) c=a+b 
(2) f =d+e 
(3) a=a+c 
(4) c=d+a 
(5) b=d+f+c 
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Cost      6 

(1) c1=a1+b1 
(2) f =d+e 
(3) a2=a1+c1 
(4) c2=d+a2 
(5) b2=d+f+c2 
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(1) c1=a1+b1 
(2) f =d+e 
(3) a2=a1+c1 
(4) X=d+a2 
(5) X=d+f+X 
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(2) f =d+e 
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Y= (c1, a2) 
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(4) X=d+Y 
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Z=  (e,f) 
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Figure 1. Motivating Example. 
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 b 
c 
a 
d 
f 
e 

LDAR   AR0&a   ; a 
LD         *(AR0)   ;  
ADAR   AR0, 2    ; b 
ADD      *(AR0)-  ; c 
ST          *(AR0)   ;  
SBAR    AR0, 2    ; d 
LD         *(AR0)   ; 
SBAR    AR0, 2    ; e 
ADD     *(AR0)+  ; f 
ST          *(AR0)   ; 
ADAR   AR0, 2    ; a 
LD         *(AR0)+  ; c 
ADD      *(AR0)-  ; a 
ST          *(AR0)-  ; d 
LD         *(AR0)+  ; a 
ADD      *(AR0)+  ; c 
ST          *(AR0)   ; 
SBAR    AR0, 2    ; d 
LD         *(AR0)-  ; f 
ADD      *(AR0)   ;  
ADAR   AR0, 3    ; c 
ADD      *(AR0)+ ; b 
ST          *(AR0)   ; 

LDAR   AR0&a1  ; a1 
LD         *(AR0)-  ; X 
ADD      *(AR0)   ; X 
ST          *(AR0)-  ; d 
LD         *(AR0)-  ; Z 
ADD      *(AR0)   ; Z 
ST          *(AR0)   ;  
ADAR   AR0, 3    ; a1 
LD         *(AR0)-  ; X 
ADD      *(AR0)   ; X 
ST          *(AR0)-  ; d 
LD         *(AR0)+  ; X 
ADD      *(AR0)    ; X 
ST          *(AR0)-  ; d 
LD         *(AR0)-  ; Z 
ADD      *(AR0)   ;  
ADAR   AR0, 2    ; X 
ADD      *(AR0)   ; X 
ST          *(AR0)   ;  

a1

X 
d 
Z 

(a) (b) 
*Note: variables on the left of semicolon is what AR0 points to after the instruction.  
Figure 2. Assembly code (a) before, and (b) after 

Coalescence 
Figure 1.c shows how we separate each one of a, b, c into 

two variables. Intuitively, in instruction (3), defining variable a 
starts a new web. We thus rename the variable a, then use that 
new name in later references. Similarly, b and c are renamed in 
instructions (4) and (5). In this code segment, c1, which is live 
from instructions (1) to (3), constitutes a closed web, c1 can be 
arbitrarily renamed regardless of other parts of the program. 
Figure 1.c and Figure 1.d show the access sequence and access 
graph after variable separation. The weight of the MWPC is 1 
unit smaller than the one before variable separation. In Figure 
1.e and Figure 1.f, we coalesce b2 with c2, i.e. we combine these 
two variables into one variable, putting them into the same 
memory location. Because the last use of c2 ends before the 
definition of b2, they can be safely coalesced as one variable X. 
Their edges are coalesced accordingly as shown in Figure 1.f. 
After coalescing, the cost is reduced by one (notice when we 
coalesce two variables, the weight of the edge between them is 
saved, since we do not need to modify the address register when 
consecutively accessing the same memory location). From 
Figure 1.g to Figure 1.n, we coalesce 4 other nodes. The final 
MWPC weight is 13 (including edges between nodes that were 
coalesced together) with an improvement of 44%. Also, the data 
segment size is reduced from 6 variables to 4 variables (a 33% 
reduction). 

The final variable layout and modified code are listed in 
Figure 2.b. After saving 4 ADAR/SBAR instructions, we 
achieve a 17% code size reduction and 17% speedup (assuming 
all instructions require the same number of cycles). However, 
coalescing if not done properly can jeopardize the access 
sequence; we propose a coalescing algorithm, which is access-
sequence sensitive to generate good solutions. 

We now discuss the effect of coalescing on GOA for 
multiple address register (ARs). Suppose 2 address registers 
AR0 and AR1 are available, for the code in Figure 1.m, we can 
simply assign two variables to each of them, e.g. {X, a1} to AR0, 
{Z, d} to AR1. The access sequence for {X, a1} as derived from 
the whole access sequence in Figure 1.m is a1XXa1XXXXXX, 
thus the access graph has only one edge with weight 3, which is 
on the MWPC. Similarly, for {Z, d}, the solution is also optimal 

(SOA cost of 0). We will show in Section 8 that coalescence can 
often generate an optimal solution for GOA. 

Figure 1.b already shows the optimal solution of MWPC for 
the case of no coalescence, and therefore no heuristic can reduce 
the cost below 6 without variable coalescence. As far as program 
reordering is concerned, it is also applicable to the code after 
coalescence as shown in Figure 1.m, so program reordering can 
be used to get more improvement after the variable coalescence.  
For GOA, since variable coalescence already obtained the 
optimal solution, no other algorithm can do any better. 

This example shows that by separating and coalescing the 
variables, we get better performance (cycles) and code size. 

4. PRELIMINARIES 
We first introduce some key concepts behind our framework. 

4.1. Assumptions 
Most of the basic assumptions are followed from previous 

works [1][2][3][6][7][10]. Others specific to our approach are as 
follows: 
1. We do a simple alias analysis [17] to determine the 

variables that might be referenced via pointers. 
2. Not all address register operations can be converted into 

auto-increment/decrement instructions. For instance, some 
address registers can point to multiple variables depending 
on the direction of the control flow or  due to multiple 
aliasing; thus, we cannot bind it to one single variable since 
it would be unsafe to optimize it as auto-increment or 
decrement for a given layout. Thus, in a multiple alias case, 
one has to use explicit address register modification (like 
LDAR, ADAR, SBAR in Figure 2) operations. 

3. In addition, array index calculation sometimes involves 
multiplication or shifting. Our algorithm does not tackle 
this. 

4. The first address register instruction in a basic block cannot 
be tackled if the control can come from several 
predecessors and the last variables accessed are not the 
same. Although, in some way these cases can be solved 
with combination of pre and post modifications, it is out of 
the scope of this paper (and is being tackled in a journal 
version of this paper). 

4.2. Webs and Variable Separation 
In order to separate memory references, which can be 

independently considered for allocation, we use the concept of 
web, i.e. a group of connected definitions and uses. A web [9] or 
live range is defined as the maximal union of du-chains. Each 
web builds a separate variable after renaming, i.e. one must bind 
all the definitions and uses within a web to a single memory 
location. Therefore, we also call it atomic variable. In this 
manner, we are able to achieve effective value separation at 
different program points. Value separation is extremely 
important as the compiler normally generates lots of temporaries 
that are re-used repeatedly. Decoupling these variables that are 
disjoint in terms of values through re-naming gives us more 
freedom to coalesce them in a proper way to maximize the profit 
of storage assignment optimizations. This is shown to be 
effective in the example from previous section. If we do not 
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separate the variables into the ones in Figure 1.b, the follow-up 
step cannot solve SOA and GOA  effectively. 

Our results show that over 80% local variables in the 
backend that can make use of the auto-increment/decrement 
instructions are re-cycled temporaries and the data segment size 
for them can increase after web identification. However, 
coalescing phase which follows greatly reduces the data segment 
size and bring about an overall size reduction when compared to 
the original data segment size. 

To avoid interfering with a good register allocator and other 
optimizations before register allocation, our optimizing pass 
comes after register allocation, when all virtual registers that will 
be on the stack are identified. Also, for user-defined variables 
and temporaries, webs are built to identify the atomic variables. 

4.3. Interference Graph and Coalescence Graph 
After values are separated into atomic variables, our 

coalescence algorithm needs to further determine which 
variables are coalesceable. 

An interference graph (IG) is built to represent the potential 
overlapping of the live ranges between different variables. The 
IG is defined as a graph where each node is an atomic variable 
and an edge between a pair of nodes means the two nodes share 
overlapping live ranges in the program, i.e. at a certain program 
point, the two atomic variables are simultaneously live, so they 
cannot be coalesced. 

A coalescence graph (CG) is a graph in which two nodes 
can be coalesced if and only if there is an edge between them. 
The CG is simply the complementary graph of the IG, which 
means, any two nodes connected by an edge on the IG will not 
be connected by an edge on the CG, and same vice-versa. In 
actual implementation, we only need the IG. 

In our 10 benchmark programs, the IGs after value 
separation are sparse. Intra-procedurally, the average degree for 
each node is 8.17 on the IG and 210 for the CG. The strong 
connectivity on the CG means atomic variables have plenty of 
choices to be coalesced with one another. The high average 
degree on the CG and the low average degree for the IG are 
probably due to the large amount of temporaries generated by 
the compiler. These temporaries are initially generated as virtual 
registers and then spilled. Most of the temporaries are defined 
once and used only a few times within the same basic block. 

5. VARIABLE COALESCENCE 

5.1. Profitability of Variable Coalescence 
The high degrees of nodes of CG allow us enough freedom 

to make good coalescing decisions for simplifying the access 
graph (AG) considerably. Simplifying access sequence through 
judicious choice of coalescing is a non-trivial problem. 
Coalescence must be performed so that the access graph is 
simplified in terms of its path cover and resulting MWPC 
solution for SOA problem.  A key observation is that, increased 
edge weights due to coalescing are unrelated to the overall 
weight increase in the path cover. Coalescing seems to impact 
more via graph topology than the edge weights as far as MWPC 
is concerned. This is due to the fact that in final MWPC solution, 
there can be at most two incident edges on each node and thus, 
attempting to increase edge weights does not seem to impact 

MWPC as much as reduction in node degrees which is a function 
of graph topology more than edge weights.  

Figure 3.a shows the original access graph and the current 
status of MWPC, i.e., a-b-c-d-e-g-h and f with total weight 21. If 
the coalescence graph permits node c and h to coalesce, we can 
coalesce the two nodes and get a MWPC (a-b-ch-d-e-g and f) in 
Figure 3.b, the weight is 20. After coalescence, the MWPC is 
worse. The reason is because node c already has 4 neighbors. 
Adding more neighbors from h is not going to gain much. In 
contrast, in Figure 3.c, we coalesce node d and g. The MWPC is 
a-b-c-dg-e-f and h with weight of 22. This example tells us 
coalescence cannot be done arbitrarily without consideration of 
the topology of the IG and AG. 
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Figure 3. Profitability of variable coalescence. 

5.2. Problem Formulation 
The problem of storage assignment through variable 

coalescence is to find both the coalescence scheme and the 
MWPC on the coalesced graph. Here are some terminologies 
and lemmas for variable coalescence. 
DEFINITIONS: 
Coalesced Node (C-Node): A C-node is a set of atomic 
variables (webs) in the AG or IG that are coalesced. Nodes 
within the same C-node cannot interfere with each other on 
the IG. Before any coalescing is done, each atomic variable is 
a C-node by itself. 
Coalesced Edge (C-Edge):  The C-edge is an edge set 
defined for a pair of C-nodes. A C-edge <c1,c2> between two 
C-nodes c1 and c2 is a set defined as: 
{<n1,n2> | n1 ∈ c1, n2 ∈ c2, <n1,n2> is an edge on AG or IG}. 
C-edges apply to either AG or IG. A C-edge exists only when 
this set is not empty. 
Coalesced Path Cover (C-PC):  A C-PC consists of a 
sequence of C-nodes c1, c2,…ck, where <ci,ci+1> is a C-edge 
between C-node ci and ci+1. The C-PC covers all C-nodes 
exactly once, contains no cycles, and no C-node has a degree 
larger than two in the C-PC.  C-PC always refers to a PC on a 
C-AG. 
Weight of a C-Edge:  The weight of a C-edge is the sum of 
all edge weights in the C-edge. 0-weight C-edges are 
eliminated from the graph. 
Weight of a C-Node: The weight of a C-node is the sum of 
all edge weights between any two nodes contained in this C-
node. 
Weight of a C-PC: The weight of a C-PC is the sum of 
weights of all the C-nodes and C-edges along the path. 
C-MWPC (Coalesced Maximum Weight Path Cover): The 
C-MWPC is the C-PC with the maximum weight for all 
possible C-PCs on the C-AG. 
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C-AG (Coalesced Access Graph):  The C-AG is the access 
graph after node coalescence which is composed of all C-
nodes and C-edges (edges are from the AG). 
C-IG (Coalesced Interference Graph):  The C-IG is the 
interference graph after node coalescence, which is composed 
of all C-nodes and C-edges (edges are from the IG). A C-
edge between two C-nodes means the two C-nodes has 
interference live ranges, and cannot be coalesced. 
 

The algorithm starts by considering the AG as a starting 
point where each node is labeled as a C-node and by using IG, 
updates the C-nodes in both through coalescing leading to C-AG 
and C-IG which keeps on changing dynamically as we coalesce 
more and more C-nodes. We first show that optimal coalescing 
for best MWPC (called C-MWPC) is a hard problem. Next we 
attempt heuristic solution for it through a set of coalescing rules. 

LEMMA 1: The C-MWPC problem is NP-complete—Proof in 
Appendix A. 
LEMMA 2: Solution to the C-MWPC problem is no worse 
than the solution to the MWPC—Proof in Appendix A. 
 

6. OVERALL FRAMEWORK 
 

Build access graph and 
interference graph 

Find MWPC 

Variable coalescence 

Program reorder 

Build access graph and 
interference graph 

Minimal graph coloring 

Variable coalescence 

Program reorder 

SOA Phases GOA Phases 

Pre-iteration coalescence 

Variable renaming 
Instruction rewriting 

Variable renaming 
Instruction rewriting 

 
Figure 4. Framework for the SOA solver. 

Figure 4 shows the overall framework of our coalescing 
based SOA and GOA solver. Both solvers begin with building 
the access graph (AGs) and interference graphs (IGs). For SOA, 
a heuristic approach is chosen to iterate over MWPC searching 
and variable coalescence after the pre-iteration coalescence 
(explained in the next section) is done. As presented in the next 
section, in every iteration, the heuristic algorithm finds 2 C-
nodes to coalesce if possible. Then, the two C-nodes are 
coalesced and the C-AG and C-IG changed. An existing MWPC 
solver is run to find a C-MWPC solution. The solution with the 
least cost ever achieved is saved and used as the final solution. 

For GOA, in most cases, we aggressively coalesce the nodes 
by minimally coloring the IG, since the minimal number of C-
nodes can possibly lead to an optimal solution. Then we use 
existing algorithms to find a GOA solution on the C-AG. We 
also propose a coalescence algorithm for GOA, when optimal 
solution is not available. The program reorder phase [6][7] can 
be optionally added for comparison. In our implementation, the 

program reordering is slightly different from [6][7]. It comes 
after the storage layout has been decided by our SOA or GOA 
solvers. For all memory access instructions (those related to auto 
address register modification) inside the same basic block, a 
dependency DAG is built. Then, we use the commute-3 [6][7], 
i.e. the exhaustive search to find out the optimal reordering of 
these instructions without violation to the dependencies. To 
reduce exhaustive search time for big basic blocks, we reorder 
for every 15 memory access instructions. Our results show that 
program reordering greatly boosted performance. Finally, we 
rename the variables in the code and change the address register 
instruction to auto-increment/decrement form regenerating the 
code. 

 

7. STORAGE ASSIGNMENT THROUGH 
VARIABLE COALESCENCE FOR SOA 

Since the C-MWPC problem is NP-complete, we have to use 
a heuristic algorithm to find solutions in a reasonable amount of 
time. 

Our heuristic algorithm is separated into 2 parts. First, a set 
of pre-iteration coalescence rules are applied to capture cases 
that are definitely profitable that do not need algorithmic 
solution. Then, in an iterative loop, coalescing is done 
incrementally. Every time, two C-nodes are selected for 
coalescing and the SOA solver (we use the Tiebreak SOA 
algorithm [10]) is run repeatedly, until no more coalescing is 
possible. Finally, the minimal SOA cost is returned together with 
a node to C-node mapping and the sub-optimal C-PC. 

7.1. Pre-iteration Coalescence Rules 
The pre-iteration rules are applied before we do iterative 

coalescing. Applying these rules will not worsen the SOA cost in 
all cases. All these rules are with respect to the access graph 
(AG). 

Note that we can only coalesce a pair of C-node if the C-
nodes do not have an interference edge between them. 
RULE 1: Coalesce all degree-0 C-nodes with any other C-
node. Doing so will not affect the SOA cost. 
RULE 2: Coalesce all degree-1 C-nodes with its neighbor. If 
its C-edge is already on the C-PC, the SOA cost is not 
affected, otherwise we reduce the SOA cost by the weight of 
this C-edge. 
RULE 3: Coalesce all degree-2 C-nodes with the neighbor 
having a higher weight C-edge connected to it. 

Rule 3 is explained in Figure 5. For C-nodes A, P, and Q, 
suppose the C-edge <A,P> is heavier than the C-edge <A,Q>. 
According to Rule 3, we should coalesce A with P. Assume there 
is a C-PC solution without coalescing A with P. Figure 5.a to 
Figure 5.d show 4 cases of that C-PC for C-edge <A,P> and 
<A,Q>. In Figure 5.a, none of the 2 C-edges is a part of  C-PC, 
so the coalescence will gain Weight(<A,P>). In Figure 5.b, 
<A,P> is already on the C-PC and the cost remains unchanged. 
Similarly, when only <A,Q> is on the C-PC (Figure 5.c), we 
gain Weight(<A,P>). And, if both of them are on the C-PC 
(Figure 5.d), the cost is unchanged. Therefore, in each case, 
coalescing A with P can only improve (or cause no change to) 
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the total weight of the C-PC before A and P are coalesced but 
will never worsen the solution. 

 
 

(a) 

A 

P Q 

A 

P Q 

A 

P Q 

A 

P Q 

AP Q AP Q AP Q AP Q 

(b) (c) (d)  
 

Figure 5. Profitability of Rule 3 Coalescence. 
 

7.2. Saving Due to Coalescence 
After applying pre-iteration rules, we start iterating. In each 

step of the iteration, we pick two C-nodes of maximum 
calculated savings to coalesce. 

The basic idea is to use the current C-PC offset assignment 
to estimate savings if the 2 C-nodes were coalesced. 

For example, Figure 6.a shows a C-AG with 8 nodes. The 
thick line is the current C-PC of the C-AG. If we coalesce d with 
g, C-edge <h,d> will now be on the C-PC, and C-edges <c,d> 
and <d,e> will be eliminated. C-edge <g,d> is also saved after d 
is merged with g. So, the total saving is W(h,d)+W(g,d)-W(d,e)-
W(d,c) = 1, where W(<i,j>) is the weight of a C-edge <i,j>. 

In other words, we reduce the SOA cost by 1 if we coalesce 
d with g. In Figure 7, we illustrate 3 different cases to coalesce J 
with I. Figure 7.a is a general case. 

We save: 
a. The weight of the C-edge between I and J. 
b. The weight of all C-edges from I’s neighbors (on the path 
cover) to J, i.e. C-edges <C,J> and <P,J> if they exist. 

We lose: 
a. The weight of all C-edges from J’s neighbors (on the C-PC) 

to I, i.e. C-edges <D,I> and <Q,I> if they exist. 
Figure 7.b is a special case where if I and J are already 

neighbors on the C-PC, then the weights of both C-edges <I,Q> 
and <J,P> are saved. In Figure 7.c, I and J have a common 
neighbor C. Then, the weight of the C-edge <C,J> is not a loss. 

The saving for J coalesced to I is different from the one for I 
to coalesce to J. We take the bigger one as the saving for I and 
J’s coalescence. 
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Figure 6. Cases to calculate the savings. 

7.3. Tiebreak for the Same Savings 
If two or more pairs of C-nodes have the same coalescence 

savings, we apply a Tie-break rule. This tie-breaker is the same 
as that in [10] for selecting equal-weight edges in building the 
MWPC. In our case, for each coalescence candidate {c1, c2}, the 
tiebreak weight T is calculated as: 

 

T = Σ weight (all C-edges joined to c1 and/or c2) 

 

A smaller T has higher priority, as explained in [10]. C-edge 
<c1,c2> (if it exists) is only counted once. In our benchmarks, 
this rule breaks all ties and improves the results slightly. 
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Figure 7. Coalescence cases based on previous C-PC. 

 

7.4. Coalescence Algorithm for SOA 
 1. Input: C-AG, C-IG 
2. Output:  
3.   a. The minimal soa cost. 
4.   b. A node map from original node to its C-node. 
 
5. coalesce_soa(C-AG, C-IG) { 
6.   Apply_pre_iteration_rules(); 
7.   min_soa_cost = soa_cost (C-AG); 
8.   min_node_map = a one to one map 

9.   do{ 
10.     find two C-Nodes satify: a.Do not interfere 
                                 b.Connected on C-AG 
                                 c.With max_saving 
11.     if(max_saving>0){ 
12.       coalesce C-Nodes, update C-AG,C-IG,  
13.       if(soa_cost(C-AG)< min_soa_cost) 

    record as min_soa_cost, min_node_map. 
14.     } 
15.   } while(max_saving>0) 
 
16.   while(there are C-Nodes we can coalesce){ 
17.     find two C-Nodes satisfy: a.Do not interfere  
                                  b.With max_saving 
18.     coalesce C-Nodes, update C-AG,C-IG,  
19.     if(soa_cost(C-AG)< min_soa_cost) 
20.       record as min_soa_cost, min_node_map. 
21.   } 
22.   return min_soa_cost, min_node_map; 
23. }  

Figure 8. Coalescing Algorithm for SOA. 
The whole coalescence algorithm is shown in Figure 8. 

coalesce_soa takes a C-AG and a C-IG as input, and returns the 
minimal SOA cost and a node to C-node mapping. The original 
AG and IG is passed to this function. From the node mapping, 
we can easily generate the final C-AG, C-IG and C-PC solution. 

coalesce_soa contains two while loops. The first while loop 
tries to coalesce C-node pairs that are neighbors on the C-AG, 
until there is no more calculated saving to coalesce. The second 
while loop then exploits all remaining coalesceable C-node pairs, 
until no coalesceable C-node pairs can be found. Our 
coalescence framework works aggressively to reduce the number 
of C-nodes. Function soa_cost runs one of the SOA solver (we 
implement Liao’s SOA algorithm [2] enhanced with Tiebreak 
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[10]) to find the SOA cost for the current C-AG. Notice that, the 
second loop coalesces even when the calculated saving is not 
positive. This is because our savings calculation is only a 
heuristic formula. After re-running the SOA solver, we may get 
a different C-PC, which may have an even lower SOA cost. 

The reason we have two separate while loops is that usually, 
a lower node degree density gives a lower SOA cost; thus, 
coalescing neighboring C-node pairs will less likely increase the 
node degree density. In this manner, we try to drive coalescence 
via a limited graph topology property (that is node degree); more 
complicated solutions are possible but may not yield much 
benefit due to the complexity of the problem. 

 

8. STORAGE ASSIGNMENT THROUGH 
VARIABLE COALESCENCE FOR GOA 

In GOA, we have more than one address register (AR) that 
can be used to do auto-increment/decrement. With the trend in 
embedded processor design to increase the number of ARs, 
GOA is becoming more important. In Motorola DSP56300, one 
of the 8 ARs is used as stack pointer, and another one is used as 
the base address register. Other ARs can be allocated for other 
purposes to hold variables, as address registers are one of the 
register classes during register allocation. If one could solve the 
problem of address register assignment with fewer registers, the 
remaining address registers can be used for other purposes. 

Since variable coalescence can greatly reduce the number of 
C-nodes on the graph, in many cases, we can actually get 
optimal solutions for GOA. The following lemmas give the 
conditions for the optimal GOA solution. 
LEMMA 3: If there are only two C-nodes in the C-AG, then 
the SOA solution is optimal—Proof in Appendix A. 
LEMMA 4: If there are K address registers available for use and 
the number of C-nodes is no more than 2K, we can get the 
optimal solution for the GOA problem by assigning no more 
than 2 C-nodes to each address register—Proof in Appendix A. 

As we know, the IG (or CG) constrains the nodes from 
being coalesced (AG affects the cost but can be disregarded 
when minimizing the C-node number). The following lemma 
says that the minimizing problem is the same as the minimal 
coloring of the IG. 

LEMMA 5: The minimal number of C-nodes after node 
coalescence is equal to the minimal number of colors required 
to color the IG. Furthermore, a coloring scheme of the IG is 
equivalent to a legal C-node formation—Proof in Appendix 
A. 
COROLLARY 1: If we can color an IG with 2K colors, then 
there is an optimal GOA solution for K address registers. 
 

Notice that, Corollary 1 is only a sufficient condition. Even 
when the color number is greater than 2K, we may still get an 
optimal solution. Minimal graph coloring is a classic NP-
complete problem. In our problem (unlike graph coloring), we 
would like to minimize the number of colors (Address Registers). 
This is due to the fact that unused address register could be used 
as regular registers to hold values improving code quality further. 
In the register allocation setting, we are simply interested in any 

feasible solution, which has least spill cost but which uses any 
number of registers unlike minimum number of them. In our 
solution of the problem, we used a simple heuristic [9] similar to 
the one used for register allocation but which attempts to reduce 
the number colors once it finds a feasible solution. 

To quantify the number of times we can get optimal 
solutions with certain number of address registers, we did 
experiments on the 10 benchmark programs. All data are 
collected for local variables. We count the number of procedures 
that can be optimally solved in cases of 1) After IG coloring. 2) 
After the GOA solver—the dynamic number of optimal 
solutions. As mentioned in the previous section, Corollary 1 only 
gives a sufficient condition, i.e. even if an AG has more than two 
nodes, its SOA cost can still be zero, or the GOA cost can still be 
zero if the IG is not 2K-colorable. So, the actual number of 
optimal solutions after the GOA solver could be larger than the 
one got from the number of colors. 

Table 1. Percentage of Optimal Solutions for GOA 
#AR Epic Gsm G721 Mpeg2d Mpeg2e 

2 (color) 84.9 85.56 76.92 82.68 63 
2 (final) 86.8 90 96.15 90.55 77.23 
3 (color) 90.57 93.33 96.15 91.34 81 
3 (final) 94.34 97.78 100 94.49 88.12 

 
#AR Bzip2 Gzip Mcf Twol

f 
Vpr Average 

2 (color) 52.38 85.15 80 62.94 65.83 73.94 
2 (final) 87.18 90.1 93.33 79.19 82.01 87.25 
3 (color) 87.2 90.1 93.34 76.1 85.25 88.44 
3 (final) 92.31 96.04 100 89.85 94.24 94.72 

 
Table 1 shows the percentage of optimal solutions for 

different number of address registers. Row 2 and 4 is the 
percentage of optimal solutions given by the number of colors. 
For instance, for Epic, with 2 ARs, 84.9% procedures can 
generate optimal solutions after coloring. In other words, 84.9% 
procedures’ IG can be colored by 4 colors. But with 3 ARs, 
90.57% of the procedures are 6-colorable. Row 3 and 5 are the 
final results after running the GOA solver. The percentage of 
optimal procedures is increased. 

On average, 87.25% of the procedures can finally get 
optimal solutions with 2 ARs, while 94.72% procedures can 
finally get optimal solutions with 3 ARs. This means our 
solution is very close to the optimum. 

 

8.1. Heuristics for solving GOA for Non-optimal 
cases 

If the minimal color is larger than 2K, the algorithm in 
Figure 9 can still employ a heuristic algorithm to find a solution. 
The algorithm has two parts. It shares some features with the 
GOA algorithm in [10]. After variable coalescence, we may find 
that many minimal addon costs are the same, so a more powerful 
tiebreaker is implemented to handle it properly. Firstly, we 
calculate the minimal cost to add one of the existing nodes on 
IG/AG to one of the ARs. The function coalesce_soa is run for 
the group of nodes of that AR to get the addon cost. All such 
nodes with minimal addon costs are recorded in MINISET. In 
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the second part, our algorithm tries to break the ties if the 
minimal ones are not unique. We calculate two values for 
tiebreak. Value w1 is calculated for each node v in MINISET. If 
v is selected for Gi, we sum all the edges on AG from v to a node 
that is in G1UG2..UGk - Gi. Since, the edge from v to node in 
another AR is eliminated as we illustrated in the motivation 
example, we prefer a larger w1. If this still cannot break the ties, 
we try another value w2. w2 is calculated for each node v as the 
number of neighbors that are still on IG. Larger w2 means more 
interference with the nodes that have not been added to one of 
the ARs. We prefer smaller w2, which means more nodes on the 
IG later can be coalesced with v. Finally, we pick one randomly 
if there are more than one node in MINISET; our experiments 
show this rarely happens. 
 1. Input: AG, IG, K (#AR) 
2. Output:  
3.   a. The minimal goa cost. 
4.   b. A node map from node to its C-node. 
5.   c. A map from C-node to AR number. 
6.  
7. V: node set //contain all nodes initially 
8. G1..Gk: C-node sets //for each AR 
9.  
10. coalesce_goa(AG, IG, K) { 
11.   G1=G2=..=Gk=Φ;  
12.   call min_graph_color(IG) and get color groups 
13.   C1,C2,…Cn. 
14.   If (n<=2k)return goa_cost=0, C1,C2,…Cn.as C-node    
15.   groups, 2 C-nodes to each AR. 
 
16.   while(V<>Φ){ 
17.     MINISET=Φ; min_cost=MAX_INT; 
18.     //build MINISET 
19.     foreach node v in V{ 
20.       cost=minimal addon cost to put in one of  
21.            the Gi by running coalese_soa on Gi. 
22.       if (cost = min_cost){ 
23.         add (v,i) to MINISET; 
24.       }else if(cost<min_cost){ 
25.          MINISET={(v,i)}; cost->min_cost; 
26.       } 
27.     } 
28.     //tiebreak 
29.     foreach pair (v,i) in MINISET{ 
30.       w1(v)=sum(weight<u,v> on AG) uєG1υG2..υGk-Gi     
31.       w2(v)=number of v’s neighbor on the IG 
32.     } 
33.     keep only pairs with maximal w1 in MINISET. 
34.     If(still not unique) 
35.       Tie break on w2 (keep only smallest in MINISET) 
36.     If still have tie, pick one randomly.       
37.     for select pair(v,i) add v to Gi 
38.     remove v from AG and IG 
39.   } 
40.   run coalese_soa on all Gi and  
41.   return 1)the goa cost as the sum of all soa cost 
42.          2)map from node to C-node to AR, derived  
43.            from G1 to Gk and each AR’s soa solution   
44. } 

 
Figure 9. Coalescing Algorithm for GOA. 

9. COALESCENCE FOR GLOBAL 
VARIABLES 

For global variables, we do inter-procedural liveness 
analysis to find out variables with separable live ranges. This is 
done through a call graph, to find out the places where the global 
variable is defined/used in each function. A data flow algorithm 
then builds the live ranges for each global variable. With respect 
to the aliasing issues, our approach is conservative. After 
building the AG and IG for global variables, the same SOA and 
GOA algorithms is similarly applied to get the memory layout 
solution. 

For global and static variables, the code generator allocates 
memory locations in the data segment. It is possible that some of 
the global variables have initial values. Those simultaneously 
live at the program entry point will not get coalesced, so we only 
need to assign at most one initial value to each coalesced node. 

10. PERFORMANCE EVALUATIONS 

10.1. Experimental Environment 
Our environment is the Motorola 56300 processor toolset 

including a cycle-accurate simulator called sim56300, and a 
retargeted GNU C compiler (GCC), which comes with standard 
header and library files. Our pass is implemented after the reload 
pass of GCC, just before the generation of the RTL (GCC’s IR), 
whose output is assembly code, so we can capture all the 
temporaries and spill codes generated by the compiler. 

Among the 8 address registers, one is dedicated for stack 
pointer and another one is dedicated for base address pointer. 
Among the remaining 6 address registers, we reserve 3 of them 
for local variables and 3 of them for global variables. 
In our evaluation, a total of 10 benchmarks were used, among 
them, 5 from Mediabench and 5 from Spec2000int. Code cycle 
counts were obtained by limiting simulated execution to about 
500 million cycles, taking about 3 hours for each benchmark. 
Limiting the execution time is necessary because large 
SPECint2000 benchmarks may take months to finish simulation. 
We use access graphs built using profile information for all 
results. 

Table 2. Statistics for the Benchmarks 
 #insn #procs stack 

size 
soa cost goa cost 

2AR 
Epic 7084 53 135 367 91 
Gsm 14664 90 215 864 311 

G721 3451 26 91 67 16 
Mpeg2d 18530 127 325 544 221 
Mpeg2e 28690 101 677 1076 445 

Bzip2 12717 81 268 475 119 
Gzip 15873 101 268 613 119 
Mcf 5073 45 116 141 23 

Twolf 99289 197 1664 3081 777 
Vpr 57222 278 1255 2493 703 

 

Table 2 lists some statistics for the benchmarks. Column 2 
is the total number of instructions. Column 3 is the total number 
of procedures. Column 4 shows the stack slot size for all 
procedures. Column 5 and 6 are the sums of all Tie-break SOA 
costs and GOA (2AR) costs for all procedures.  

10.2. Results for SOA 
We use soa (Tiebreak SOA [10]) as our base comparison. A 

‘c’ prefix denotes coalescing. A ‘cost’ or ‘size’ suffix denotes 
cost-optimized (coalesce_soa algorithm) or size-optimized 
(coloring) coalescing. ‘pr’ denotes the use of program reordering. 

Table 3 shows that c-soa-cost achieves 64.4% stack size 
reduction and c-soa-size achieves 69.1%. This large reduction 
shows that many variables can be coalesced. This is not 
surprising because most variables are compiler-generated 
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temporaries that have a very short live range, and thus they can 
easily be coalesced with other variables. 

 
Table 3. Stack Size Reductions 

 original c-soa-cost % reduc c-soa-size % reduc 
epic 215 129 40.0 122 43.3 
gsm 750 184 75.5 171 77.2 
g721 202 79 60.9 64 68.3 
mpeg2d 688 269 60.9 260 62.2 
mpeg2e 1757 462 73.7 408 76.8 
bzip2 651 211 67.6 175 73.1 
gzip 776 255 67.1 219 71.8 
mcf 252 95 62.3 93 63.1 
twolf 5547 1648 70.3 868 84.4 
vpr 3185 1107 65.2 920 71.1 
Average 1402 444 64.4 330 69.1 
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Figure 10. SOA cost comparison (Op-cost). 
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Figure 11. SOA cost comparison (Op-size). 

Figure 10 shows c-soa-cost generally performs better than 
soa-pr. The average cost reduction is 33.3% for c-soa-cost, 
22.0% for soa-pr and 47.5% for c-soa-pr-cost. This shows that 
coalescing greatly reduces SOA cost (33.3%). Program 
reordering reduces this cost even further. 

Figure 11 shows SOA cost reduction when we try to 
minimize the stack size. c-soa-size has a higher SOA cost than c-
soa-cost. The average cost reduction is 14.8% for c-soa-size and 
42.9% for c-soa-pr-size. Program reordering actually reduces 
cost close to that for Op-cost (47.5%, Figure 10). 
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Figure 12. SOA cycle reduction  (Op-cost). 

0

5

10

15

20

25

30

epic gsm g721 m peg2d m peg2e bzip2 gzip m cf tw olf vpr

C
y
c
le
 R

e
d
u
c
ti
o
n
 

soa c-soa-size soa-pr c-soa-pr-size perfect  
 Figure 13. SOA cycle reduction (Op-size). 

 
Figures 12 and 13 shows dynamic cycle count reduction. 

This reduction includes only local variables. All the numbers are 
cycle count reduction percentages in comparison to the 
program’s original cycles. In each program, we show the perfect 
case as the rightmost bar to indicate the upper bound, indicating 
all address-arithmetic instructions are saved. This perfect case is 
constant for each benchmark program. 

In Figure 12, on average, using soa alone reduces the 
dynamic cycle count by 2.31%; c-soa-cost by 2.52%; soa-pr by 
2.60%; c-soa-pr-cost by 2.66%. Compared to soa, c-soa-cost 
reduces the cycle count by 9.1% and c-soa-pr-cost by 15.1%. Of 
all instructions, memory access instructions make up 32%. This 
is more than the average perfect cycle count reduction of 12.6% 
(cases such as aliased accesses etc. are not safe to be accessed 
without address register modification). Hence, if we have more 
memory instructions, we can gain a bigger cycle reduction. If we 
had used a register-scarce architecture in our tests, there would 
be more spills, thus creating more memory access instructions. 
Therefore, the cycle reduction would be even greater on register-
scarce architectures and on memory intensive applications. 

In Figure 13, the cycle reduction is 2.71% for c-soa-size and 
2.79% for c-soa-pr-size. This shows that the Op-size algorithm 
can achieve a greater cycle reduction than Op-cost, although this 
does not always happen. 

10.3. Results for GOA 
We compare results between Leupers and Marwedel’s GOA 

[10] (goa) and our GOA solver (c-goa). ‘pr’ indicates the use of 
program reordering. 
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Figure 14. GOA cost comparison-2AR. 

 
Figure 14 shows GOA cost for 2 address registers (2AR). 

Over goa, c-goa reduces costs by 24%; goa-pr by 54%; c-goa-pr 
by 66%. This shows that coalescing reduces GOA cost 
dramatically. With 2 ARs, the GOA cost is only about 1/10 of 
the cost of SOA. 
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Figure 15. GOA cycle reduction-2AR. 

 
Figure 15 shows percentage code cycle reductions for GOA-

2AR. The average cycle reductions for goa, c-goa, goa-pr and c-
goa-pr are 1.66%, 2.01% (+26.7% over goa), 1.78% and 2.14% 
(+29.1% over goa) respectively. The perfect case is 12.6% i.e. 
such optimizations can achieve an ideal cycle reduction of 
12.6% in our benchmarks. 

Due to space limitations, we do not show the results for 3 
address registers. Generally, using more than 2ARs produces 
diminishing returns since we are approaching the optimal 
solution. Also, using too many ARs might worsen the solution 
because each AR always requires a first address-arithmetic 
instruction that cannot be saved. 

10.4. Results for Global Variables 
Global variables are not the main optimizing focus of this 

paper because they account for less than 15% of all memory 
accesses. In Table 4, column 2 lists the number of global 
variables used for each benchmark program. We exclude 2 
benchmarks with less than 20 global variables as their results are 
not informative (0% or 100% cost reduction). If we optimize for 
size, we can save 83% of the data segment size. c-soa-cost 
reduces SOA cost by 8.5% over soa. c-goa-cost saves 77.9% on 
size and 49.6% on cost over goa. 

Global variables have a lesser cost reduction than that for 
local variables partially because we did not do program 
reordering, as it was done for the local variables. 

 

Table 4. Results for Global Variables  
c-soa-cost 

vs soa 
c-goa-cost 

vs goa (2AR)  #var 
coloring 

%size 
reduction %size %cost %size %cost 

Epic 6 -- -- -- -- -- 
Gsm 35 74.3 74.3 20 82.9 50.0 

G721 18 -- -- -- -- -- 
Mpeg2d 168 88.7 65.5 21.2 83.3 67.6 
Mpeg2e 131 80.2 36.6 1.2 77.1 51.0 

Bzip2 49 79.6 51.0 7.2 65.3 33.3 
Gzip 133 87.2 40.6 3.8 77.4 54.5 
Mcf 8 -- -- -- -- -- 

Twolf 304 88.2 14.1 4.8 82.6 28.6 
Vpr 102 85.3 11.8 1.2 76.5 62.3 

Ave. 87.3 83.4 42.0 8.5 77.9 49.6 
 

10.5. Compilation Time 
Our largest benchmark, Twolf (about 300KB binary), takes 

about 4 minutes to compile on a 1GHz Pentium III, using Leuper 
and Marwedel’s GOA.  Full coalescing reduces this time to only 
11 seconds.  Thus coalescing reduces the execution time of GOA 
algorithms, and most programs compile under 1 second. 

11. CONCLUSION AND FUTURE WORK 
This paper proposes a framework based on coalescing for 

both local and global variables to utilize the auto-increment/ 
decrement instructions in DSP processors. We have shown the 
advantages of coalescence over previous approaches to capture 
more opportunities to maximally reduce both static/dynamic 
code and data size and to speed up the program execution. 

This work represents a shift in approaches that solve storage 
assignment problem; the ongoing research is focused on 
developing new heuristics for solving MWPC and program 
reordering which has diminishing returns due to the high density 
of access graphs and hardness of the problem in graph-theoretic 
space. This paper demonstrates the capability of variable 
coalescence to break the performance bottleneck. Compared to 
previous approaches, variable coalescence with program 
reordering reduces SOA costs by 48% and GOA (2AR) costs by 
66%. Especially, for the GOA problem, coalescence can get 
almost all (87-94%) optimal solutions quickly together with 
other benefits. The dynamic stack size reduction is 69% without 
stack slot reuse. In our experiments, we showed that coalescing 
can reduce the dynamic code cycle count by 2.8% (c-soa-pr-
size), corresponding to a 43% reduction in SOA cost. 

In short, performing variable coalescence proves to be 
beneficial on multiple counts dramatically improving the 
solution space of this important problem faced in a wide variety 
of DSP processors (ranging from older TI TMS series to the 
newest StrongARM). 
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APPENDIX A 
Lemma 1: The C-MWPC problem is NP-complete. 
Proof: C-MWPC can be easily reduced to the MWPC 
problem assuming a coalescence graph without any edge or a 
fully connected interference graph. Therefore, a C-node is an 
atomic variable and the C-PC only consists of atomic 
variables i.e. the C-PC is the same as the PC. A fully 
connected interference graph is possible, when all atomic 
variables have overlapping live ranges. Hence, the C-MWPC 
problem is NP-complete. � 
 
Lemma 2: Solution to the C-MWPC problem is no worse 
than the solution to the MWPC. 
Proof: Simply, any solution to the MWPC is also a solution 
to the C-MWPC. But some solutions to C-MWPC may not 
apply to the MWPC (if any coalescing were made). � 
 
Lemma 3: If there are only two C-nodes in the C-AG, then 
the SOA solution is optimal. 
Proof: Since there is only one C-edge on the C-AG, so this 
C-edge must be on the C-MWPC. Hence, the SOA cost is 0. 
� 
Lemma 4: If there are K address registers available for use 
and the number of C-nodes is no more than 2K, we can get 
the optimal solution for the GOA problem by assigning no 
more than 2 C-nodes to each address register. 
Proof: Following the Lemma, the SOA problem for each 
address register is optimal—zero SOA cost. The GOA cost is 
equal to the sum of the SOA cost for all address registers, so 
the GOA cost is also 0. Therefore, the solution is optimal. � 
 
Lemma 5: The minimal number of C-nodes after node 
coalescence is equal to the minimal number of colors required 
to color the IG. Furthermore, a coloring scheme of the IG is 
equivalent to a legal C-node formation. 
Proof: A coloring scheme of the IG can be directly applied to 
a C-node formation by assigning nodes with the same color in 
the IG to the same C-Node. The number of C-nodes is the 
number of colors for the IG. Similarly, a C-node formation 
can be directed to a coloring scheme by coloring the nodes in 
the same C-node with the same color and nodes in different 
C-nodes with different colors. Since nodes in the same C-
node do not interfere with each other, i.e. no edge between 
them on the IG. Therefore, the two problems are equivalent 
and minimal coloring is the same as minimal number of C-
nodes we can get. � 
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