

Storage Assignment Optimizations through Variable
Coalescence for Embedded Processors

 Xiaotong Zhuang ChokSheak Lau Santosh Pande

Georgia Institute of Technology

College of Computing
801 Atlantic Drive

Atlanta, GA, 30332-0280
{xt2000, chok, santosh}@cc.gatech.edu

ABSTRACT1
Modern embedded processors with dedicated address generation
unit support memory access with indirect addressing mode with
auto-increment and decrement. The auto-increment/decrement
mode saves address arithmetic instructions.

Liao et al [2][3] categorized this problem as simple offset
assignment (SOA) problem and general offset assignment
(GOA) problem, which involve storage layout of variables and
assignment of address registers respectively proposing heuristic
solutions. Later work [6][7] proposed improvements in the
performance of Liao’s solution by undertaking program and
storage transformations that affect access sequence.

In this paper, we propose a new approach of variable
coalescence, which can reduce both instruction segment and data
segment size and improve the utilization of automatic address
register modification. Variable coalescence combines been
observed in terms of code and data size reduction, SOA and
GOA cost reduction and dynamic cycle reduction. Variables not
interfering with other (not simultaneously live at any program
point) into the same memory location. Coalescing allows
simplifications of the access graph yielding better SOA solutions
or can perhaps lead to such a few uncoalesceable memory
locations that GOA solutions for them are optimal. Moreover, it
can reduce the program footprint both statically and at runtime
(for stack variables) in terms of data segments. Variable
coalescence is orthogonal to other solutions proposed;
performing variable coalescence first and then solving the SOA
or GOA problem with other techniques leads to excellent
solutions. In this work, we have successfully applied it to both
SOA and GOA problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’03, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006…$5.00.

The algorithms are incorporated into and evaluated on the
commercial compiler provided by Motorola to boost code
generation performance on the DSP 56k chip. Compared to
previous approaches, variable coalescence with program
reordering reduces SOA costs by 48% and GOA (2AR) costs by
66% for Mediabench and SPEC benchmarks. Moreover, we
show that our approach obtains theoretically optimal solution
(zero cost) for the GOA problem in 87% of the cases with just 2
address registers and in 94% of the cases with 3 address
registers.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors– Compilers,
optimization; C.3 [Special-purpose and application-based
Systems]: Real-time and embedded systems

General Terms
Performance, Design

Keywords
Storage Assignment, SOA, GOA, Variable Coalescence

1. INTRODUCTION AND RELATED
WORK

The rapid evolution in embedded processors and DSP
architectures has raised new challenges for compilers to generate
efficient and small footprint code for the ever-increasing
demands of user applications. Reducing the code size also
reduces the amount of memory traffic for instruction fetching
and data fetching, which can further speed up the program
execution.

Most modern DSP architectures have specialized address
generation units (AGU) to facilitate the memory address
generation in different modes. The AGU normally provides
simple address register (AR) operation (typically, plus or minus
an immediate value or a value in offset register) in parallel with
the memory access operation, so that the address register

220

operation is executed for free without dilating the clock cycle on
the critical path. However, due to constraints on instruction size,
traditional register-plus-offset addressing mode is either not
supported (e.g. TMS320C25) or requires more instruction words
(DSP56300). Therefore, transforming address arithmetic into
auto-increment/decrement mode can help to generate compact
and efficient code and speed up execution as well.

Most modern DSP processors have at least 8 address
registers. For example, the Sony pDSP chip and the Motorola
DSP56300 processor each has 8 address registers. Starcore’s
SC140 has 16 address registers. Analog Devices’ ADSP-21020
has 8 address registers (32 bit) for data memory and 8 address
registers for program memory (24 bit). Post modification is
supported for all these chips. The hardware support shows the
designers’ expectation for heavy usage of these instructions,
however, the actual usage of them is still quite limited. In our
experiments, we counted the number of auto-
increment/decrement instructions generated by GCC compiler
retargeted for the Motorola DSP 56300 chip. For most
benchmark programs, less than 3% of the generated address
instructions make use of the auto-increment/decrement mode
before our optimizations. Recent study [11] also shows that on
some embedded processors up to 55% of operations could use
address register operations to reduce cycle counts and code size.
Therefore, significant opportunities exist for optimizing address
register assignments.

The storage assignment problem was first studied by Bartley
[1] and Liao et al [2][3]. They identified the problem as two
classes. The simple offset assignment (SOA) problem considers
only one address register, while the general offset assignment
(GOA) problem handles more than one address register. The
problem is modeled as a graph and the objective is to find the
maximum weight path cover (MWPC). Liao proved that finding
the MWPC is NP-complete, and so heuristics are used to solve
both SOA and GOA. Later, Leupers and Marwedel_[10]
extended Liao’s work by proposing a Tie-break heuristic for
SOA and a variable partitioning strategy for GOA to reduce the
SOA and GOA costs. Atri, Ramanujam and Kandemir [12]
further improved the heuristics by an algorithm called
Incremental-Solve-SOA. Sudarsanam et. al. [5] studied the offset
problem in the presence of auto-increment/decrement feature
that varies from –l to +l with k address registers. Rao and Pande
[6][7] attempted to reorder the memory access sequence (called
program reordering) through algebraic transformations on the
expression trees. The problem is formulated as seeking the least
cost access sequence (LCAS). [13][14][15][16] talk about the
problem of allocating address registers to array references using
auto-increment/decrement mode.

In this paper, we propose a different approach to first
identify the webs or atomic variables, and then coalesce them
aggressively into fewer memory locations. Our study shows that
the access graph of the atomic variables is sparse, and
coalescence can effectively reorganize them to generate simpler
access sequences with high-weighted path covers. Besides,
aggressive coalescence can significantly reduce the static and
dynamic memory space requirements for both SOA and GOA
problems. Another important feature of the coalescence
algorithm is it can be combined with most previous approaches
to further boost the performance.

Our SOA solution gives a 33% (48% when combined with
program reordering technique [6][7]) cost reduction and 24%
data segment size reduction. For GOA problems, we show that
through aggressive coalescence, over 87% of the procedures get
optimal solutions (almost all intra basic block address register
operation can be handled by auto-increment/decrement
instructions) with only 2 address registers (ARs) and over 94%
of the procedures get optimal solution with 3 ARs. In the case of
2 ARs, our solution reduces GOA cost (please refer to next
section for the definition of SOA and GOA cost) by 24% (66%
when combined with program reordering [6][7]) compared to
one of the classic GOA algorithms. The data segment size is
reduced by 24%, while none of the previous approaches resulted
in any data segment size reduction.

The remainder of the paper is organized as follows: Section
2 briefly introduces the SOA and GOA problem, Section 3 gives
a motivating example for our approach, Section 4 talks about
preliminaries, Section 5 presents terminologies and main results
for variable coalescence, Section 6 is the overall framework,
Sections 7 and 8 present the SOA and GOA algorithms, Section
9 covers issues about global variables, Section 10 shows results,
and finally, Section 11 concludes the paper.

2. SOA AND GOA PROBLEM
Offset assignment is the problem of assigning offsets

(memory layout) to variables so that the number of address
arithmetic instructions can be minimized by using auto-
increment/decrement modes of register indirect addressing
instructions. For example, Figure 2a shows the memory layout
for 6 variables (address grows upwards) and generated code
corresponding to Figure 1.a—we assume one address register
AR0, so it is a Simple Offset Assignment (SOA) problem. For
the first instruction c=a+b, after accessing b, i.e. ADD *(AR0)-,
we use auto-decrement to point AR0 to the memory location of
variable c, thus saving one address register modification
instruction (like ADAR—add to AR, and SBAR—subtract from
AR). Thus, the problem of maximizing the use of auto-
increment/decrement instructions is to find a good memory
layout for the access sequence (the order variables are accessed)
such that explicit address modification instructions are (such as
ADAR and SBAR) are minimized.

Liao et al [2] modeled the problem of SOA by an undirected
graph called access graph (AG), which is built from the access
sequence. In Figure 1.a, we show the access sequence (below the
code) for the 5-line code segment. Here, we assume that
variables on the right-side of the equation must be loaded one-
by-one from left to right, then, after the evaluation, the result is
stored into the left-side variable. For the time being, assume that
all variables are stored in memory (in case they are not, access
graph will show the order of only those accesses corresponding
to memory accesses, i.e. load/stores). The access graph is shown
in Figure 1.b. Each node is a variable. The edge weight
represents the number of times the two nodes are accessed
consecutively in the access sequence (the edge weight is
statically estimated by the compiler by counting the number of
transitions or could be built using profile information). The
problem now becomes one of finding a maximum weight path
cover (MWPC) [2] for the graph. The MWPC is a path cover (a
path cover is one or several acyclic path passing through all the

221

nodes such that no node has more than two neighbors on the path;
it can be directly converted into a linear memory layout
sequence) that has maximal weight. The thick line in Figure 1.b
shows one of the MWPC solutions. The weight of the MWPC is
the number of address register modification instructions saved.
The sum of the weights of all edges not on the MWPC is equal
to the number of times address register modification instructions
should be used, and this sum is called the SOA cost ([2] gives
details on the SOA cost, intuitively, for uncovered edges,
address register modification instructions must be inserted and
the edge weights now represents how many times these
instructions are executed).

Earlier approaches [2][10][12] have shown the MWPC
problem is NP-complete and tried to find a good path cover with
a weight close to the MWPC. Also, program reordering [6][7]
was used to modify variable access sequences through algebraic
laws (like from a+b to b+a), such that the MWPC solution can
be improved. But access graphs are dense and finding good
graph-theoretic solutions to them are limited by the complexity
(NP-completeness) of the problem.

For General Offset Assignment (GOA) problem, the
general approach is to assign each variable to an address register
(AR), where a variable assigned to an AR uses that AR only.
Then for all variables assigned to the same AR, the problem is
solved as SOA. GOA cost is actually the sum of SOA costs for
all address registers. For GOA, the access sequence for variables
handled by one AR is derived from the all-variable access
sequence but considering only the variables using that AR. For
example, in Figure 1.a, if we have two address registers AR0 and
AR1, {a,b,c} is handled by AR0 and {d,e,f} is handled by AR1,
then the access sequence for AR0 is abcacaaccb, the access
sequence for AR1 is defddf.

As alluded previously, current techniques to solve this
problem attempt to efficiently partition graph first (GOA
problem) and then solve each sub-graph as SOA. But access
graphs are dense and finding good graph-theoretic solutions for
partitioning them (GOA) or for path cover (SOA) are limited by
the complexity (NP-completeness) of the problem. This prompts
our approach, which attempts to simplify the access graphs using
memory coalescence of values. In the next section, we first
illustrate the importance of our approach through an example.

3. MOTIVATING EXAMPLE
In Figure 1, we give an example to illustrate how our

variable coalescence algorithm works and how it can reduce the
cost when other methods fail.

The code segment in Figure 1.a (taken from [6][7] with
minor changes) contains 5 instructions. We assume this code
segment is the entire program itself. In real programs, we need to
do liveness analysis and variable renaming/coalescing either
inside a whole procedure (for local variables) or inside a whole
program (for global variables).

The coalescence algorithm actually first separates values
into atomic units called webs (explained in Section 4.2) [9]
through variable renaming. A web is a du/ud chain closure of a
variable and allows independent allocation of values in memory
[9].

(a) (b)

(1) c=a+b
(2) f =d+e
(3) a=a+c
(4) c=d+a
(5) b=d+f+c

abcdefacadacdfcb

a b

f c

e d
1

1 2
1

1

2

2

1

3

1

Weight 9
Cost 6

(1) c1=a1+b1
(2) f =d+e
(3) a2=a1+c1
(4) c2=d+a2
(5) b2=d+f+c2

(c)

a1b1c1defa1c1a2da2c2dfc2b2

a1 a2

b1

b2

c1c2

f

d

e
2

1

1
1 1

1

1

1

1
1

1

1

1

1

Weight 8
Cost 7

(d)

(1) c1=a1+b1
(2) f =d+e
(3) a2=a1+c1
(4) X=d+a2
(5) X=d+f+X

X= (b2, c2)

(e)

a1 a2

b1

c1X

f

d

e
2

1

1
1 1

1

1

1

1
1

1

1

1

(f)

Weight 9
Cost 6

(1) Y=a1+b1
(2) f =d+e
(3) Y=a1+Y
(4) X=d+Y
(5) X=d+f+X
X= (b2, c2)
Y= (c1, a2)

(g)

a1 Y

b1

X

f

d

e
3

1

1
1 1

1

1

1

1

1

(h)

Weight 10
Cost 5

1

(1) Y=a1+b1
(2) Z =d+Z
(3) Y=a1+Y
(4) X=d+Y
(5) X=d+Z+X
X= (b2, c2)
Y= (c1, a2)
Z= (e,f)

(i)

a1 Y

b1

X

Z

d

3

1

2 1

1

1

1

1

(j)

Weight 11
Cost 4

1

(1) X=a1+b1
(2) Z =d+Z
(3) X=a1+X
(4) X=d+X
(5) X=d+Z+X
X= (b2, c2, c1, a2)
Z= (e,f)

(k)

a1

b1

X

Z

d

1

2 1

1
1

4

(l)

Weight 12
Cost 3

1

(1) X=a1+X
(2) Z =d+Z
(3) X=a1+X
(4) X=d+X
(5) X=d+Z+X
X= (b2, c2, c1, a2 , b1)
Z= (e,f)

(m)

a1

Z

d

1

2

1

4

Weight 13
Cost 2

2

X

a1XXdZZa1XXdXXdZXX
(n)

Figure 1. Motivating Example.

222

 b
c
a
d
f
e

LDAR AR0&a ; a
LD *(AR0) ;
ADAR AR0, 2 ; b
ADD *(AR0)- ; c
ST *(AR0) ;
SBAR AR0, 2 ; d
LD *(AR0) ;
SBAR AR0, 2 ; e
ADD *(AR0)+ ; f
ST *(AR0) ;
ADAR AR0, 2 ; a
LD *(AR0)+ ; c
ADD *(AR0)- ; a
ST *(AR0)- ; d
LD *(AR0)+ ; a
ADD *(AR0)+ ; c
ST *(AR0) ;
SBAR AR0, 2 ; d
LD *(AR0)- ; f
ADD *(AR0) ;
ADAR AR0, 3 ; c
ADD *(AR0)+ ; b
ST *(AR0) ;

LDAR AR0&a1 ; a1
LD *(AR0)- ; X
ADD *(AR0) ; X
ST *(AR0)- ; d
LD *(AR0)- ; Z
ADD *(AR0) ; Z
ST *(AR0) ;
ADAR AR0, 3 ; a1
LD *(AR0)- ; X
ADD *(AR0) ; X
ST *(AR0)- ; d
LD *(AR0)+ ; X
ADD *(AR0) ; X
ST *(AR0)- ; d
LD *(AR0)- ; Z
ADD *(AR0) ;
ADAR AR0, 2 ; X
ADD *(AR0) ; X
ST *(AR0) ;

a1

X
d
Z

(a) (b)
*Note: variables on the left of semicolon is what AR0 points to after the instruction.
Figure 2. Assembly code (a) before, and (b) after

Coalescence
Figure 1.c shows how we separate each one of a, b, c into

two variables. Intuitively, in instruction (3), defining variable a
starts a new web. We thus rename the variable a, then use that
new name in later references. Similarly, b and c are renamed in
instructions (4) and (5). In this code segment, c1, which is live
from instructions (1) to (3), constitutes a closed web, c1 can be
arbitrarily renamed regardless of other parts of the program.
Figure 1.c and Figure 1.d show the access sequence and access
graph after variable separation. The weight of the MWPC is 1
unit smaller than the one before variable separation. In Figure
1.e and Figure 1.f, we coalesce b2 with c2, i.e. we combine these
two variables into one variable, putting them into the same
memory location. Because the last use of c2 ends before the
definition of b2, they can be safely coalesced as one variable X.
Their edges are coalesced accordingly as shown in Figure 1.f.
After coalescing, the cost is reduced by one (notice when we
coalesce two variables, the weight of the edge between them is
saved, since we do not need to modify the address register when
consecutively accessing the same memory location). From
Figure 1.g to Figure 1.n, we coalesce 4 other nodes. The final
MWPC weight is 13 (including edges between nodes that were
coalesced together) with an improvement of 44%. Also, the data
segment size is reduced from 6 variables to 4 variables (a 33%
reduction).

The final variable layout and modified code are listed in
Figure 2.b. After saving 4 ADAR/SBAR instructions, we
achieve a 17% code size reduction and 17% speedup (assuming
all instructions require the same number of cycles). However,
coalescing if not done properly can jeopardize the access
sequence; we propose a coalescing algorithm, which is access-
sequence sensitive to generate good solutions.

We now discuss the effect of coalescing on GOA for
multiple address register (ARs). Suppose 2 address registers
AR0 and AR1 are available, for the code in Figure 1.m, we can
simply assign two variables to each of them, e.g. {X, a1} to AR0,
{Z, d} to AR1. The access sequence for {X, a1} as derived from
the whole access sequence in Figure 1.m is a1XXa1XXXXXX,
thus the access graph has only one edge with weight 3, which is
on the MWPC. Similarly, for {Z, d}, the solution is also optimal

(SOA cost of 0). We will show in Section 8 that coalescence can
often generate an optimal solution for GOA.

Figure 1.b already shows the optimal solution of MWPC for
the case of no coalescence, and therefore no heuristic can reduce
the cost below 6 without variable coalescence. As far as program
reordering is concerned, it is also applicable to the code after
coalescence as shown in Figure 1.m, so program reordering can
be used to get more improvement after the variable coalescence.
For GOA, since variable coalescence already obtained the
optimal solution, no other algorithm can do any better.

This example shows that by separating and coalescing the
variables, we get better performance (cycles) and code size.

4. PRELIMINARIES
We first introduce some key concepts behind our framework.

4.1. Assumptions
Most of the basic assumptions are followed from previous

works [1][2][3][6][7][10]. Others specific to our approach are as
follows:
1. We do a simple alias analysis [17] to determine the

variables that might be referenced via pointers.
2. Not all address register operations can be converted into

auto-increment/decrement instructions. For instance, some
address registers can point to multiple variables depending
on the direction of the control flow or due to multiple
aliasing; thus, we cannot bind it to one single variable since
it would be unsafe to optimize it as auto-increment or
decrement for a given layout. Thus, in a multiple alias case,
one has to use explicit address register modification (like
LDAR, ADAR, SBAR in Figure 2) operations.

3. In addition, array index calculation sometimes involves
multiplication or shifting. Our algorithm does not tackle
this.

4. The first address register instruction in a basic block cannot
be tackled if the control can come from several
predecessors and the last variables accessed are not the
same. Although, in some way these cases can be solved
with combination of pre and post modifications, it is out of
the scope of this paper (and is being tackled in a journal
version of this paper).

4.2. Webs and Variable Separation
In order to separate memory references, which can be

independently considered for allocation, we use the concept of
web, i.e. a group of connected definitions and uses. A web [9] or
live range is defined as the maximal union of du-chains. Each
web builds a separate variable after renaming, i.e. one must bind
all the definitions and uses within a web to a single memory
location. Therefore, we also call it atomic variable. In this
manner, we are able to achieve effective value separation at
different program points. Value separation is extremely
important as the compiler normally generates lots of temporaries
that are re-used repeatedly. Decoupling these variables that are
disjoint in terms of values through re-naming gives us more
freedom to coalesce them in a proper way to maximize the profit
of storage assignment optimizations. This is shown to be
effective in the example from previous section. If we do not

223

separate the variables into the ones in Figure 1.b, the follow-up
step cannot solve SOA and GOA effectively.

Our results show that over 80% local variables in the
backend that can make use of the auto-increment/decrement
instructions are re-cycled temporaries and the data segment size
for them can increase after web identification. However,
coalescing phase which follows greatly reduces the data segment
size and bring about an overall size reduction when compared to
the original data segment size.

To avoid interfering with a good register allocator and other
optimizations before register allocation, our optimizing pass
comes after register allocation, when all virtual registers that will
be on the stack are identified. Also, for user-defined variables
and temporaries, webs are built to identify the atomic variables.

4.3. Interference Graph and Coalescence Graph
After values are separated into atomic variables, our

coalescence algorithm needs to further determine which
variables are coalesceable.

An interference graph (IG) is built to represent the potential
overlapping of the live ranges between different variables. The
IG is defined as a graph where each node is an atomic variable
and an edge between a pair of nodes means the two nodes share
overlapping live ranges in the program, i.e. at a certain program
point, the two atomic variables are simultaneously live, so they
cannot be coalesced.

A coalescence graph (CG) is a graph in which two nodes
can be coalesced if and only if there is an edge between them.
The CG is simply the complementary graph of the IG, which
means, any two nodes connected by an edge on the IG will not
be connected by an edge on the CG, and same vice-versa. In
actual implementation, we only need the IG.

In our 10 benchmark programs, the IGs after value
separation are sparse. Intra-procedurally, the average degree for
each node is 8.17 on the IG and 210 for the CG. The strong
connectivity on the CG means atomic variables have plenty of
choices to be coalesced with one another. The high average
degree on the CG and the low average degree for the IG are
probably due to the large amount of temporaries generated by
the compiler. These temporaries are initially generated as virtual
registers and then spilled. Most of the temporaries are defined
once and used only a few times within the same basic block.

5. VARIABLE COALESCENCE

5.1. Profitability of Variable Coalescence
The high degrees of nodes of CG allow us enough freedom

to make good coalescing decisions for simplifying the access
graph (AG) considerably. Simplifying access sequence through
judicious choice of coalescing is a non-trivial problem.
Coalescence must be performed so that the access graph is
simplified in terms of its path cover and resulting MWPC
solution for SOA problem. A key observation is that, increased
edge weights due to coalescing are unrelated to the overall
weight increase in the path cover. Coalescing seems to impact
more via graph topology than the edge weights as far as MWPC
is concerned. This is due to the fact that in final MWPC solution,
there can be at most two incident edges on each node and thus,
attempting to increase edge weights does not seem to impact

MWPC as much as reduction in node degrees which is a function
of graph topology more than edge weights.

Figure 3.a shows the original access graph and the current
status of MWPC, i.e., a-b-c-d-e-g-h and f with total weight 21. If
the coalescence graph permits node c and h to coalesce, we can
coalesce the two nodes and get a MWPC (a-b-ch-d-e-g and f) in
Figure 3.b, the weight is 20. After coalescence, the MWPC is
worse. The reason is because node c already has 4 neighbors.
Adding more neighbors from h is not going to gain much. In
contrast, in Figure 3.c, we coalesce node d and g. The MWPC is
a-b-c-dg-e-f and h with weight of 22. This example tells us
coalescence cannot be done arbitrarily without consideration of
the topology of the IG and AG.

h

a

g

f

d

b

c

e

dg

(a)

2

2

1

6

3

4
2

4

h

a

f

b

c

e

(c)

3

2

1

6

3

1

10

2 2

(b)

a

g

f

d

b

e

2

1

6

3

5

4

4

2

ch

Figure 3. Profitability of variable coalescence.

5.2. Problem Formulation
The problem of storage assignment through variable

coalescence is to find both the coalescence scheme and the
MWPC on the coalesced graph. Here are some terminologies
and lemmas for variable coalescence.
DEFINITIONS:
Coalesced Node (C-Node): A C-node is a set of atomic
variables (webs) in the AG or IG that are coalesced. Nodes
within the same C-node cannot interfere with each other on
the IG. Before any coalescing is done, each atomic variable is
a C-node by itself.
Coalesced Edge (C-Edge): The C-edge is an edge set
defined for a pair of C-nodes. A C-edge <c1,c2> between two
C-nodes c1 and c2 is a set defined as:
{<n1,n2> | n1 ∈ c1, n2 ∈ c2, <n1,n2> is an edge on AG or IG}.
C-edges apply to either AG or IG. A C-edge exists only when
this set is not empty.
Coalesced Path Cover (C-PC): A C-PC consists of a
sequence of C-nodes c1, c2,…ck, where <ci,ci+1> is a C-edge
between C-node ci and ci+1. The C-PC covers all C-nodes
exactly once, contains no cycles, and no C-node has a degree
larger than two in the C-PC. C-PC always refers to a PC on a
C-AG.
Weight of a C-Edge: The weight of a C-edge is the sum of
all edge weights in the C-edge. 0-weight C-edges are
eliminated from the graph.
Weight of a C-Node: The weight of a C-node is the sum of
all edge weights between any two nodes contained in this C-
node.
Weight of a C-PC: The weight of a C-PC is the sum of
weights of all the C-nodes and C-edges along the path.
C-MWPC (Coalesced Maximum Weight Path Cover): The
C-MWPC is the C-PC with the maximum weight for all
possible C-PCs on the C-AG.

224

C-AG (Coalesced Access Graph): The C-AG is the access
graph after node coalescence which is composed of all C-
nodes and C-edges (edges are from the AG).
C-IG (Coalesced Interference Graph): The C-IG is the
interference graph after node coalescence, which is composed
of all C-nodes and C-edges (edges are from the IG). A C-
edge between two C-nodes means the two C-nodes has
interference live ranges, and cannot be coalesced.

The algorithm starts by considering the AG as a starting
point where each node is labeled as a C-node and by using IG,
updates the C-nodes in both through coalescing leading to C-AG
and C-IG which keeps on changing dynamically as we coalesce
more and more C-nodes. We first show that optimal coalescing
for best MWPC (called C-MWPC) is a hard problem. Next we
attempt heuristic solution for it through a set of coalescing rules.

LEMMA 1: The C-MWPC problem is NP-complete—Proof in
Appendix A.
LEMMA 2: Solution to the C-MWPC problem is no worse
than the solution to the MWPC—Proof in Appendix A.

6. OVERALL FRAMEWORK

Build access graph and
interference graph

Find MWPC

Variable coalescence

Program reorder

Build access graph and
interference graph

Minimal graph coloring

Variable coalescence

Program reorder

SOA Phases GOA Phases

Pre-iteration coalescence

Variable renaming
Instruction rewriting

Variable renaming
Instruction rewriting

Figure 4. Framework for the SOA solver.

Figure 4 shows the overall framework of our coalescing
based SOA and GOA solver. Both solvers begin with building
the access graph (AGs) and interference graphs (IGs). For SOA,
a heuristic approach is chosen to iterate over MWPC searching
and variable coalescence after the pre-iteration coalescence
(explained in the next section) is done. As presented in the next
section, in every iteration, the heuristic algorithm finds 2 C-
nodes to coalesce if possible. Then, the two C-nodes are
coalesced and the C-AG and C-IG changed. An existing MWPC
solver is run to find a C-MWPC solution. The solution with the
least cost ever achieved is saved and used as the final solution.

For GOA, in most cases, we aggressively coalesce the nodes
by minimally coloring the IG, since the minimal number of C-
nodes can possibly lead to an optimal solution. Then we use
existing algorithms to find a GOA solution on the C-AG. We
also propose a coalescence algorithm for GOA, when optimal
solution is not available. The program reorder phase [6][7] can
be optionally added for comparison. In our implementation, the

program reordering is slightly different from [6][7]. It comes
after the storage layout has been decided by our SOA or GOA
solvers. For all memory access instructions (those related to auto
address register modification) inside the same basic block, a
dependency DAG is built. Then, we use the commute-3 [6][7],
i.e. the exhaustive search to find out the optimal reordering of
these instructions without violation to the dependencies. To
reduce exhaustive search time for big basic blocks, we reorder
for every 15 memory access instructions. Our results show that
program reordering greatly boosted performance. Finally, we
rename the variables in the code and change the address register
instruction to auto-increment/decrement form regenerating the
code.

7. STORAGE ASSIGNMENT THROUGH
VARIABLE COALESCENCE FOR SOA

Since the C-MWPC problem is NP-complete, we have to use
a heuristic algorithm to find solutions in a reasonable amount of
time.

Our heuristic algorithm is separated into 2 parts. First, a set
of pre-iteration coalescence rules are applied to capture cases
that are definitely profitable that do not need algorithmic
solution. Then, in an iterative loop, coalescing is done
incrementally. Every time, two C-nodes are selected for
coalescing and the SOA solver (we use the Tiebreak SOA
algorithm [10]) is run repeatedly, until no more coalescing is
possible. Finally, the minimal SOA cost is returned together with
a node to C-node mapping and the sub-optimal C-PC.

7.1. Pre-iteration Coalescence Rules
The pre-iteration rules are applied before we do iterative

coalescing. Applying these rules will not worsen the SOA cost in
all cases. All these rules are with respect to the access graph
(AG).

Note that we can only coalesce a pair of C-node if the C-
nodes do not have an interference edge between them.
RULE 1: Coalesce all degree-0 C-nodes with any other C-
node. Doing so will not affect the SOA cost.
RULE 2: Coalesce all degree-1 C-nodes with its neighbor. If
its C-edge is already on the C-PC, the SOA cost is not
affected, otherwise we reduce the SOA cost by the weight of
this C-edge.
RULE 3: Coalesce all degree-2 C-nodes with the neighbor
having a higher weight C-edge connected to it.

Rule 3 is explained in Figure 5. For C-nodes A, P, and Q,
suppose the C-edge <A,P> is heavier than the C-edge <A,Q>.
According to Rule 3, we should coalesce A with P. Assume there
is a C-PC solution without coalescing A with P. Figure 5.a to
Figure 5.d show 4 cases of that C-PC for C-edge <A,P> and
<A,Q>. In Figure 5.a, none of the 2 C-edges is a part of C-PC,
so the coalescence will gain Weight(<A,P>). In Figure 5.b,
<A,P> is already on the C-PC and the cost remains unchanged.
Similarly, when only <A,Q> is on the C-PC (Figure 5.c), we
gain Weight(<A,P>). And, if both of them are on the C-PC
(Figure 5.d), the cost is unchanged. Therefore, in each case,
coalescing A with P can only improve (or cause no change to)

225

the total weight of the C-PC before A and P are coalesced but
will never worsen the solution.

(a)

A

P Q

A

P Q

A

P Q

A

P Q

AP Q AP Q AP Q AP Q

(b) (c) (d)

Figure 5. Profitability of Rule 3 Coalescence.

7.2. Saving Due to Coalescence
After applying pre-iteration rules, we start iterating. In each

step of the iteration, we pick two C-nodes of maximum
calculated savings to coalesce.

The basic idea is to use the current C-PC offset assignment
to estimate savings if the 2 C-nodes were coalesced.

For example, Figure 6.a shows a C-AG with 8 nodes. The
thick line is the current C-PC of the C-AG. If we coalesce d with
g, C-edge <h,d> will now be on the C-PC, and C-edges <c,d>
and <d,e> will be eliminated. C-edge <g,d> is also saved after d
is merged with g. So, the total saving is W(h,d)+W(g,d)-W(d,e)-
W(d,c) = 1, where W(<i,j>) is the weight of a C-edge <i,j>.

In other words, we reduce the SOA cost by 1 if we coalesce
d with g. In Figure 7, we illustrate 3 different cases to coalesce J
with I. Figure 7.a is a general case.

We save:
a. The weight of the C-edge between I and J.
b. The weight of all C-edges from I’s neighbors (on the path
cover) to J, i.e. C-edges <C,J> and <P,J> if they exist.

We lose:
a. The weight of all C-edges from J’s neighbors (on the C-PC)

to I, i.e. C-edges <D,I> and <Q,I> if they exist.
Figure 7.b is a special case where if I and J are already

neighbors on the C-PC, then the weights of both C-edges <I,Q>
and <J,P> are saved. In Figure 7.c, I and J have a common
neighbor C. Then, the weight of the C-edge <C,J> is not a loss.

The saving for J coalesced to I is different from the one for I
to coalesce to J. We take the bigger one as the saving for I and
J’s coalescence.

h

a

g

f

d

b

c

e

dg

(a)

2

2

2
1

2

3

4
2

4

h

a

f

b

c

e

(b)

5

2

2
1

6

3

3

2

2 2

Figure 6. Cases to calculate the savings.

7.3. Tiebreak for the Same Savings
If two or more pairs of C-nodes have the same coalescence

savings, we apply a Tie-break rule. This tie-breaker is the same
as that in [10] for selecting equal-weight edges in building the
MWPC. In our case, for each coalescence candidate {c1, c2}, the
tiebreak weight T is calculated as:

T = Σ weight (all C-edges joined to c1 and/or c2)

A smaller T has higher priority, as explained in [10]. C-edge
<c1,c2> (if it exists) is only counted once. In our benchmarks,
this rule breaks all ties and improves the results slightly.

I J

P

(c)

Q

C

I J

P

(b)

Q

I,J

P Q

P Q

C

I,J

(a)

I J

P Q

C D

P Q

C D

I,J

Figure 7. Coalescence cases based on previous C-PC.

7.4. Coalescence Algorithm for SOA
 1. Input: C-AG, C-IG
2. Output:
3. a. The minimal soa cost.
4. b. A node map from original node to its C-node.

5. coalesce_soa(C-AG, C-IG) {
6. Apply_pre_iteration_rules();
7. min_soa_cost = soa_cost (C-AG);
8. min_node_map = a one to one map

9. do{
10. find two C-Nodes satify: a.Do not interfere
 b.Connected on C-AG
 c.With max_saving
11. if(max_saving>0){
12. coalesce C-Nodes, update C-AG,C-IG,
13. if(soa_cost(C-AG)< min_soa_cost)

 record as min_soa_cost, min_node_map.
14. }
15. } while(max_saving>0)

16. while(there are C-Nodes we can coalesce){
17. find two C-Nodes satisfy: a.Do not interfere
 b.With max_saving
18. coalesce C-Nodes, update C-AG,C-IG,
19. if(soa_cost(C-AG)< min_soa_cost)
20. record as min_soa_cost, min_node_map.
21. }
22. return min_soa_cost, min_node_map;
23. }

Figure 8. Coalescing Algorithm for SOA.
The whole coalescence algorithm is shown in Figure 8.

coalesce_soa takes a C-AG and a C-IG as input, and returns the
minimal SOA cost and a node to C-node mapping. The original
AG and IG is passed to this function. From the node mapping,
we can easily generate the final C-AG, C-IG and C-PC solution.

coalesce_soa contains two while loops. The first while loop
tries to coalesce C-node pairs that are neighbors on the C-AG,
until there is no more calculated saving to coalesce. The second
while loop then exploits all remaining coalesceable C-node pairs,
until no coalesceable C-node pairs can be found. Our
coalescence framework works aggressively to reduce the number
of C-nodes. Function soa_cost runs one of the SOA solver (we
implement Liao’s SOA algorithm [2] enhanced with Tiebreak

226

[10]) to find the SOA cost for the current C-AG. Notice that, the
second loop coalesces even when the calculated saving is not
positive. This is because our savings calculation is only a
heuristic formula. After re-running the SOA solver, we may get
a different C-PC, which may have an even lower SOA cost.

The reason we have two separate while loops is that usually,
a lower node degree density gives a lower SOA cost; thus,
coalescing neighboring C-node pairs will less likely increase the
node degree density. In this manner, we try to drive coalescence
via a limited graph topology property (that is node degree); more
complicated solutions are possible but may not yield much
benefit due to the complexity of the problem.

8. STORAGE ASSIGNMENT THROUGH
VARIABLE COALESCENCE FOR GOA

In GOA, we have more than one address register (AR) that
can be used to do auto-increment/decrement. With the trend in
embedded processor design to increase the number of ARs,
GOA is becoming more important. In Motorola DSP56300, one
of the 8 ARs is used as stack pointer, and another one is used as
the base address register. Other ARs can be allocated for other
purposes to hold variables, as address registers are one of the
register classes during register allocation. If one could solve the
problem of address register assignment with fewer registers, the
remaining address registers can be used for other purposes.

Since variable coalescence can greatly reduce the number of
C-nodes on the graph, in many cases, we can actually get
optimal solutions for GOA. The following lemmas give the
conditions for the optimal GOA solution.
LEMMA 3: If there are only two C-nodes in the C-AG, then
the SOA solution is optimal—Proof in Appendix A.
LEMMA 4: If there are K address registers available for use and
the number of C-nodes is no more than 2K, we can get the
optimal solution for the GOA problem by assigning no more
than 2 C-nodes to each address register—Proof in Appendix A.

As we know, the IG (or CG) constrains the nodes from
being coalesced (AG affects the cost but can be disregarded
when minimizing the C-node number). The following lemma
says that the minimizing problem is the same as the minimal
coloring of the IG.

LEMMA 5: The minimal number of C-nodes after node
coalescence is equal to the minimal number of colors required
to color the IG. Furthermore, a coloring scheme of the IG is
equivalent to a legal C-node formation—Proof in Appendix
A.
COROLLARY 1: If we can color an IG with 2K colors, then
there is an optimal GOA solution for K address registers.

Notice that, Corollary 1 is only a sufficient condition. Even
when the color number is greater than 2K, we may still get an
optimal solution. Minimal graph coloring is a classic NP-
complete problem. In our problem (unlike graph coloring), we
would like to minimize the number of colors (Address Registers).
This is due to the fact that unused address register could be used
as regular registers to hold values improving code quality further.
In the register allocation setting, we are simply interested in any

feasible solution, which has least spill cost but which uses any
number of registers unlike minimum number of them. In our
solution of the problem, we used a simple heuristic [9] similar to
the one used for register allocation but which attempts to reduce
the number colors once it finds a feasible solution.

To quantify the number of times we can get optimal
solutions with certain number of address registers, we did
experiments on the 10 benchmark programs. All data are
collected for local variables. We count the number of procedures
that can be optimally solved in cases of 1) After IG coloring. 2)
After the GOA solver—the dynamic number of optimal
solutions. As mentioned in the previous section, Corollary 1 only
gives a sufficient condition, i.e. even if an AG has more than two
nodes, its SOA cost can still be zero, or the GOA cost can still be
zero if the IG is not 2K-colorable. So, the actual number of
optimal solutions after the GOA solver could be larger than the
one got from the number of colors.

Table 1. Percentage of Optimal Solutions for GOA
#AR Epic Gsm G721 Mpeg2d Mpeg2e

2 (color) 84.9 85.56 76.92 82.68 63
2 (final) 86.8 90 96.15 90.55 77.23
3 (color) 90.57 93.33 96.15 91.34 81
3 (final) 94.34 97.78 100 94.49 88.12

#AR Bzip2 Gzip Mcf Twol

f
Vpr Average

2 (color) 52.38 85.15 80 62.94 65.83 73.94
2 (final) 87.18 90.1 93.33 79.19 82.01 87.25
3 (color) 87.2 90.1 93.34 76.1 85.25 88.44
3 (final) 92.31 96.04 100 89.85 94.24 94.72

Table 1 shows the percentage of optimal solutions for

different number of address registers. Row 2 and 4 is the
percentage of optimal solutions given by the number of colors.
For instance, for Epic, with 2 ARs, 84.9% procedures can
generate optimal solutions after coloring. In other words, 84.9%
procedures’ IG can be colored by 4 colors. But with 3 ARs,
90.57% of the procedures are 6-colorable. Row 3 and 5 are the
final results after running the GOA solver. The percentage of
optimal procedures is increased.

On average, 87.25% of the procedures can finally get
optimal solutions with 2 ARs, while 94.72% procedures can
finally get optimal solutions with 3 ARs. This means our
solution is very close to the optimum.

8.1. Heuristics for solving GOA for Non-optimal
cases

If the minimal color is larger than 2K, the algorithm in
Figure 9 can still employ a heuristic algorithm to find a solution.
The algorithm has two parts. It shares some features with the
GOA algorithm in [10]. After variable coalescence, we may find
that many minimal addon costs are the same, so a more powerful
tiebreaker is implemented to handle it properly. Firstly, we
calculate the minimal cost to add one of the existing nodes on
IG/AG to one of the ARs. The function coalesce_soa is run for
the group of nodes of that AR to get the addon cost. All such
nodes with minimal addon costs are recorded in MINISET. In

227

the second part, our algorithm tries to break the ties if the
minimal ones are not unique. We calculate two values for
tiebreak. Value w1 is calculated for each node v in MINISET. If
v is selected for Gi, we sum all the edges on AG from v to a node
that is in G1UG2..UGk - Gi. Since, the edge from v to node in
another AR is eliminated as we illustrated in the motivation
example, we prefer a larger w1. If this still cannot break the ties,
we try another value w2. w2 is calculated for each node v as the
number of neighbors that are still on IG. Larger w2 means more
interference with the nodes that have not been added to one of
the ARs. We prefer smaller w2, which means more nodes on the
IG later can be coalesced with v. Finally, we pick one randomly
if there are more than one node in MINISET; our experiments
show this rarely happens.
 1. Input: AG, IG, K (#AR)
2. Output:
3. a. The minimal goa cost.
4. b. A node map from node to its C-node.
5. c. A map from C-node to AR number.
6.
7. V: node set //contain all nodes initially
8. G1..Gk: C-node sets //for each AR
9.
10. coalesce_goa(AG, IG, K) {
11. G1=G2=..=Gk=Φ;
12. call min_graph_color(IG) and get color groups
13. C1,C2,…Cn.
14. If (n<=2k)return goa_cost=0, C1,C2,…Cn.as C-node
15. groups, 2 C-nodes to each AR.

16. while(V<>Φ){
17. MINISET=Φ; min_cost=MAX_INT;
18. //build MINISET
19. foreach node v in V{
20. cost=minimal addon cost to put in one of
21. the Gi by running coalese_soa on Gi.
22. if (cost = min_cost){
23. add (v,i) to MINISET;
24. }else if(cost<min_cost){
25. MINISET={(v,i)}; cost->min_cost;
26. }
27. }
28. //tiebreak
29. foreach pair (v,i) in MINISET{
30. w1(v)=sum(weight<u,v> on AG) uєG1υG2..υGk-Gi
31. w2(v)=number of v’s neighbor on the IG
32. }
33. keep only pairs with maximal w1 in MINISET.
34. If(still not unique)
35. Tie break on w2 (keep only smallest in MINISET)
36. If still have tie, pick one randomly.
37. for select pair(v,i) add v to Gi
38. remove v from AG and IG
39. }
40. run coalese_soa on all Gi and
41. return 1)the goa cost as the sum of all soa cost
42. 2)map from node to C-node to AR, derived
43. from G1 to Gk and each AR’s soa solution
44. }

Figure 9. Coalescing Algorithm for GOA.

9. COALESCENCE FOR GLOBAL
VARIABLES

For global variables, we do inter-procedural liveness
analysis to find out variables with separable live ranges. This is
done through a call graph, to find out the places where the global
variable is defined/used in each function. A data flow algorithm
then builds the live ranges for each global variable. With respect
to the aliasing issues, our approach is conservative. After
building the AG and IG for global variables, the same SOA and
GOA algorithms is similarly applied to get the memory layout
solution.

For global and static variables, the code generator allocates
memory locations in the data segment. It is possible that some of
the global variables have initial values. Those simultaneously
live at the program entry point will not get coalesced, so we only
need to assign at most one initial value to each coalesced node.

10. PERFORMANCE EVALUATIONS

10.1. Experimental Environment
Our environment is the Motorola 56300 processor toolset

including a cycle-accurate simulator called sim56300, and a
retargeted GNU C compiler (GCC), which comes with standard
header and library files. Our pass is implemented after the reload
pass of GCC, just before the generation of the RTL (GCC’s IR),
whose output is assembly code, so we can capture all the
temporaries and spill codes generated by the compiler.

Among the 8 address registers, one is dedicated for stack
pointer and another one is dedicated for base address pointer.
Among the remaining 6 address registers, we reserve 3 of them
for local variables and 3 of them for global variables.
In our evaluation, a total of 10 benchmarks were used, among
them, 5 from Mediabench and 5 from Spec2000int. Code cycle
counts were obtained by limiting simulated execution to about
500 million cycles, taking about 3 hours for each benchmark.
Limiting the execution time is necessary because large
SPECint2000 benchmarks may take months to finish simulation.
We use access graphs built using profile information for all
results.

Table 2. Statistics for the Benchmarks
 #insn #procs stack

size
soa cost goa cost

2AR
Epic 7084 53 135 367 91
Gsm 14664 90 215 864 311

G721 3451 26 91 67 16
Mpeg2d 18530 127 325 544 221
Mpeg2e 28690 101 677 1076 445

Bzip2 12717 81 268 475 119
Gzip 15873 101 268 613 119
Mcf 5073 45 116 141 23

Twolf 99289 197 1664 3081 777
Vpr 57222 278 1255 2493 703

Table 2 lists some statistics for the benchmarks. Column 2
is the total number of instructions. Column 3 is the total number
of procedures. Column 4 shows the stack slot size for all
procedures. Column 5 and 6 are the sums of all Tie-break SOA
costs and GOA (2AR) costs for all procedures.

10.2. Results for SOA
We use soa (Tiebreak SOA [10]) as our base comparison. A

‘c’ prefix denotes coalescing. A ‘cost’ or ‘size’ suffix denotes
cost-optimized (coalesce_soa algorithm) or size-optimized
(coloring) coalescing. ‘pr’ denotes the use of program reordering.

Table 3 shows that c-soa-cost achieves 64.4% stack size
reduction and c-soa-size achieves 69.1%. This large reduction
shows that many variables can be coalesced. This is not
surprising because most variables are compiler-generated

228

temporaries that have a very short live range, and thus they can
easily be coalesced with other variables.

Table 3. Stack Size Reductions

 original c-soa-cost % reduc c-soa-size % reduc
epic 215 129 40.0 122 43.3
gsm 750 184 75.5 171 77.2
g721 202 79 60.9 64 68.3
mpeg2d 688 269 60.9 260 62.2
mpeg2e 1757 462 73.7 408 76.8
bzip2 651 211 67.6 175 73.1
gzip 776 255 67.1 219 71.8
mcf 252 95 62.3 93 63.1
twolf 5547 1648 70.3 868 84.4
vpr 3185 1107 65.2 920 71.1
Average 1402 444 64.4 330 69.1

0

0.2

0.4

0.6

0.8

1

1.2

epic gsm g721 mpeg2d mpeg2e bzip2 gzip mcf twolf vpr

No
rm

al
iz

ed
 R

at
io

soa c-soa-cost soa-pr c-soa-pr-cost
Figure 10. SOA cost comparison (Op-cost).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

epic gsm g721 mpeg2d mpeg2e bzip2 gzip mcf twolf vpr

No
rm

al
iz

ed
 R

at
io

soa c-soa-size soa-pr c-soa-pr-size
Figure 11. SOA cost comparison (Op-size).

Figure 10 shows c-soa-cost generally performs better than
soa-pr. The average cost reduction is 33.3% for c-soa-cost,
22.0% for soa-pr and 47.5% for c-soa-pr-cost. This shows that
coalescing greatly reduces SOA cost (33.3%). Program
reordering reduces this cost even further.

Figure 11 shows SOA cost reduction when we try to
minimize the stack size. c-soa-size has a higher SOA cost than c-
soa-cost. The average cost reduction is 14.8% for c-soa-size and
42.9% for c-soa-pr-size. Program reordering actually reduces
cost close to that for Op-cost (47.5%, Figure 10).

0

5

10

15

20

25

30

epic gsm g721 m peg2d m peg2e bzip2 gzip m cf tw olf vpr

C
y
c
le
 R

e
d
u
c
ti
o
n

soa c-soa-cost soa-pr c-soa-pr-cost perfect
Figure 12. SOA cycle reduction (Op-cost).

0

5

10

15

20

25

30

epic gsm g721 m peg2d m peg2e bzip2 gzip m cf tw olf vpr

C
y
c
le
 R

e
d
u
c
ti
o
n

soa c-soa-size soa-pr c-soa-pr-size perfect
 Figure 13. SOA cycle reduction (Op-size).

Figures 12 and 13 shows dynamic cycle count reduction.

This reduction includes only local variables. All the numbers are
cycle count reduction percentages in comparison to the
program’s original cycles. In each program, we show the perfect
case as the rightmost bar to indicate the upper bound, indicating
all address-arithmetic instructions are saved. This perfect case is
constant for each benchmark program.

In Figure 12, on average, using soa alone reduces the
dynamic cycle count by 2.31%; c-soa-cost by 2.52%; soa-pr by
2.60%; c-soa-pr-cost by 2.66%. Compared to soa, c-soa-cost
reduces the cycle count by 9.1% and c-soa-pr-cost by 15.1%. Of
all instructions, memory access instructions make up 32%. This
is more than the average perfect cycle count reduction of 12.6%
(cases such as aliased accesses etc. are not safe to be accessed
without address register modification). Hence, if we have more
memory instructions, we can gain a bigger cycle reduction. If we
had used a register-scarce architecture in our tests, there would
be more spills, thus creating more memory access instructions.
Therefore, the cycle reduction would be even greater on register-
scarce architectures and on memory intensive applications.

In Figure 13, the cycle reduction is 2.71% for c-soa-size and
2.79% for c-soa-pr-size. This shows that the Op-size algorithm
can achieve a greater cycle reduction than Op-cost, although this
does not always happen.

10.3. Results for GOA
We compare results between Leupers and Marwedel’s GOA

[10] (goa) and our GOA solver (c-goa). ‘pr’ indicates the use of
program reordering.

229

0

0.2

0.4

0.6

0.8

1

1.2

epic gsm g721 mpeg2d mpeg2e bzip2 gzip mcf twolf vpr

No
rm

al
iz

ed
 R

at
io

goa c-goa goa-pr c-goa-pr
Figure 14. GOA cost comparison-2AR.

Figure 14 shows GOA cost for 2 address registers (2AR).

Over goa, c-goa reduces costs by 24%; goa-pr by 54%; c-goa-pr
by 66%. This shows that coalescing reduces GOA cost
dramatically. With 2 ARs, the GOA cost is only about 1/10 of
the cost of SOA.

0

5

10

15

20

25

30

epic gsm g721 m peg2d m peg2e bzip2 gzip m cf tw olf vpr average

C
y
c
le
 R

e
d
u
c
ti
o
n

goa c-goa goa-pr c-goa-pr perfect
Figure 15. GOA cycle reduction-2AR.

Figure 15 shows percentage code cycle reductions for GOA-

2AR. The average cycle reductions for goa, c-goa, goa-pr and c-
goa-pr are 1.66%, 2.01% (+26.7% over goa), 1.78% and 2.14%
(+29.1% over goa) respectively. The perfect case is 12.6% i.e.
such optimizations can achieve an ideal cycle reduction of
12.6% in our benchmarks.

Due to space limitations, we do not show the results for 3
address registers. Generally, using more than 2ARs produces
diminishing returns since we are approaching the optimal
solution. Also, using too many ARs might worsen the solution
because each AR always requires a first address-arithmetic
instruction that cannot be saved.

10.4. Results for Global Variables
Global variables are not the main optimizing focus of this

paper because they account for less than 15% of all memory
accesses. In Table 4, column 2 lists the number of global
variables used for each benchmark program. We exclude 2
benchmarks with less than 20 global variables as their results are
not informative (0% or 100% cost reduction). If we optimize for
size, we can save 83% of the data segment size. c-soa-cost
reduces SOA cost by 8.5% over soa. c-goa-cost saves 77.9% on
size and 49.6% on cost over goa.

Global variables have a lesser cost reduction than that for
local variables partially because we did not do program
reordering, as it was done for the local variables.

Table 4. Results for Global Variables
c-soa-cost

vs soa
c-goa-cost

vs goa (2AR) #var
coloring

%size
reduction %size %cost %size %cost

Epic 6 -- -- -- -- --
Gsm 35 74.3 74.3 20 82.9 50.0

G721 18 -- -- -- -- --
Mpeg2d 168 88.7 65.5 21.2 83.3 67.6
Mpeg2e 131 80.2 36.6 1.2 77.1 51.0

Bzip2 49 79.6 51.0 7.2 65.3 33.3
Gzip 133 87.2 40.6 3.8 77.4 54.5
Mcf 8 -- -- -- -- --

Twolf 304 88.2 14.1 4.8 82.6 28.6
Vpr 102 85.3 11.8 1.2 76.5 62.3

Ave. 87.3 83.4 42.0 8.5 77.9 49.6

10.5. Compilation Time
Our largest benchmark, Twolf (about 300KB binary), takes

about 4 minutes to compile on a 1GHz Pentium III, using Leuper
and Marwedel’s GOA. Full coalescing reduces this time to only
11 seconds. Thus coalescing reduces the execution time of GOA
algorithms, and most programs compile under 1 second.

11. CONCLUSION AND FUTURE WORK
This paper proposes a framework based on coalescing for

both local and global variables to utilize the auto-increment/
decrement instructions in DSP processors. We have shown the
advantages of coalescence over previous approaches to capture
more opportunities to maximally reduce both static/dynamic
code and data size and to speed up the program execution.

This work represents a shift in approaches that solve storage
assignment problem; the ongoing research is focused on
developing new heuristics for solving MWPC and program
reordering which has diminishing returns due to the high density
of access graphs and hardness of the problem in graph-theoretic
space. This paper demonstrates the capability of variable
coalescence to break the performance bottleneck. Compared to
previous approaches, variable coalescence with program
reordering reduces SOA costs by 48% and GOA (2AR) costs by
66%. Especially, for the GOA problem, coalescence can get
almost all (87-94%) optimal solutions quickly together with
other benefits. The dynamic stack size reduction is 69% without
stack slot reuse. In our experiments, we showed that coalescing
can reduce the dynamic code cycle count by 2.8% (c-soa-pr-
size), corresponding to a 43% reduction in SOA cost.

In short, performing variable coalescence proves to be
beneficial on multiple counts dramatically improving the
solution space of this important problem faced in a wide variety
of DSP processors (ranging from older TI TMS series to the
newest StrongARM).

12. ACKNOWLEDGEMENT
The authors gratefully acknowledge the support of the

National Science Foundation, which funded this work via grants
CCR-0220262 (ITR) and CCR-0073512.

230

13. REFERENCES
[1] D.Bartley, Optimizing Stack Frame access for processors

with restricted addressing Modes, Software – Practice and
Experience, 22(2): 101-110. Feb 1992.

[2] S.Liao, et al. Storage assignment to decrease code size, In
ACM (PLDI), pp. 186-195, 1995.

[3] S.Liao et al. Storage assignment to decrease code size,
ACM Transactions on Programming Languages and
Systems, 18(3): 235-253, May 1996.

[4] A. Sudarsanam, S. Malik, S. Tjiang, and S. Liao.
Optimization of Embedded DSP Programs Using Post-pass
Data-flow Analysis. In Proc. of ICCAD’97, Speech, and
Signal Processing. 1997.

[5] A.Sudarsanam, S.Liao, and S. Devadas, Analysis and
Evaluation of Address Arithmetic Capabilities in Custom
DSP Architectures. In Proc. ACM/IEEE DAC, pp. 287-292,
1997.

[6] A. Rao and S. Pande. Storage Assignment Optimizations to
Generate Compact and Efficient Code on Embedded DSPs.
In ACM (PLDI), pp.128-138, 1999.

[7] A. Rao Compiler Optimizations for Storage Assignment on
Embedded DSPs. Master’s thesis, Dept. of ECECS, Univ.
of Cincinnati, Oct. 1998.

[8] Motorola, Inc., Motorola DSP56300 Family Optimizing C
Compiler User’s Manual.

[9] S. S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufman, 1997.

[10] R. Leupers and P. Marwedel. Algorithm for
Address Assignment in DSP Code Generation, Proc.
ICCAD, 1996

[11] S. Udayanarayanan and C. Chakrabarti. Address code
generation for DSPs. In Proc. the 38th Design Automation
Conference (DAC), June 2001.

[12] S. Atri, J. Ramanujam, and M. Kandemir. Improving
variable placement for embedded processors, In Proc.
Languages and Compilers for High-Performance
Computing, 2000.

[13] G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, S. Malik,
“Optimal Live Range Merge for Address Register
Allocation in Embedded Programs”, International
Conference on Compiler Construction (CC01), 2001.

[14] Araujo, G., Sudarsanam, A., and Malik, S. Instruction set
design and optimizations for address computation in DSP
processors. In 9th International Symposium on Systems
Synthesis (November 1996), IEEE, pp. 31-37.

[15] Gebotys, C. DSP address optimization using a minimum
cost circulation technique. In Proceedings of the
International Conference on Computer-Aided Design
(November 1997), IEEE, pp. 100-103.

[16] Leupers, R., Basu, A., and Marwedel, P, “Optimized array
index computation in DSP programs”, In Proceedings of the
ASP-DAC (February 1998), IEEE.

[17] A. V. Aho and R. Sethi, J. D. Ullman, Compilers
Principles, Techniques and Tools, Addison-Wesley,
Reading, MA, 1986.

APPENDIX A
Lemma 1: The C-MWPC problem is NP-complete.
Proof: C-MWPC can be easily reduced to the MWPC
problem assuming a coalescence graph without any edge or a
fully connected interference graph. Therefore, a C-node is an
atomic variable and the C-PC only consists of atomic
variables i.e. the C-PC is the same as the PC. A fully
connected interference graph is possible, when all atomic
variables have overlapping live ranges. Hence, the C-MWPC
problem is NP-complete. �

Lemma 2: Solution to the C-MWPC problem is no worse
than the solution to the MWPC.
Proof: Simply, any solution to the MWPC is also a solution
to the C-MWPC. But some solutions to C-MWPC may not
apply to the MWPC (if any coalescing were made). �

Lemma 3: If there are only two C-nodes in the C-AG, then
the SOA solution is optimal.
Proof: Since there is only one C-edge on the C-AG, so this
C-edge must be on the C-MWPC. Hence, the SOA cost is 0.
�
Lemma 4: If there are K address registers available for use
and the number of C-nodes is no more than 2K, we can get
the optimal solution for the GOA problem by assigning no
more than 2 C-nodes to each address register.
Proof: Following the Lemma, the SOA problem for each
address register is optimal—zero SOA cost. The GOA cost is
equal to the sum of the SOA cost for all address registers, so
the GOA cost is also 0. Therefore, the solution is optimal. �

Lemma 5: The minimal number of C-nodes after node
coalescence is equal to the minimal number of colors required
to color the IG. Furthermore, a coloring scheme of the IG is
equivalent to a legal C-node formation.
Proof: A coloring scheme of the IG can be directly applied to
a C-node formation by assigning nodes with the same color in
the IG to the same C-Node. The number of C-nodes is the
number of colors for the IG. Similarly, a C-node formation
can be directed to a coloring scheme by coloring the nodes in
the same C-node with the same color and nodes in different
C-nodes with different colors. Since nodes in the same C-
node do not interfere with each other, i.e. no edge between
them on the IG. Therefore, the two problems are equivalent
and minimal coloring is the same as minimal number of C-
nodes we can get. �

231

