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ABSTRACT
The production of embedded systems is continuously in-
creasing, but developing reusable software for such systems
is notoriously difficult, in particular in the case of low-end
embedded systems based on 16-bit or 8-bit processors. We
have developed a compilation system for executing Java byte
code on low-end embedded systems, and we demonstrate
how this system permits object-oriented programming tech-
niques to be used on devices with only a few hundred bytes
of RAM and a few kilobytes of ROM.

We analyze the execution overheads of using object-orien-
ted programming on low-end embedded systems. Based on
the conclusion that memory consumption is the major obsta-
cle, we show how the configuration features and optimiza-
tions integrated into our compiler can be used to signifi-
cantly reduce memory requirements. In particular, we use a
novel approach based on Java interfaces to control integra-
tion of Java programs with the hardware, and demonstrate
how aggressive whole-program optimization can significantly
reduce the size of the compiled program.

Categories and Subject Descriptors
D.3.4 [Software]: Processors—compilers; D.3.2 [Software]:
Language Classifications—object-oriented languages

General Terms
Performance, Languages

Keywords
Embedded systems, compilers, Java, interfaces

1. INTRODUCTION
The production of embedded systems is continuously in-

creasing, and improved device connectivity enables the con-
struction of pervasive computing systems composed of het-
erogeneous collections of devices. Today, systems equipped
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with microprocessors range from advanced set-top boxes to
simple coffee machines. But even though the price/perfor-
mance ratio of microprocessors continues to decrease, and
full-fledged 32-bit processors are used in embedded systems,
small 16-bit and 8-bit microprocessors remain attractive for
low-end embedded systems due to their low price and low
power consumption characteristics paired with relatively high
performance.

There is a shift in embedded systems from programming
the required functionality in hardware to using general-pur-
pose hardware and supplying the required functionality in
software, thus obtaining reuse at the hardware level. How-
ever, software for low-end embedded systems is often writ-
ten in C or perhaps assembly language; development in such
languages is tedious, and reuse is difficult. Moreover, in a
heterogeneous system with embedded systems and external
control systems, a different language will often be used when
programming the control systems.

Object-oriented languages facilitate fast development of
robust, reusable software, and would thus appear to be an
obvious evolution path. Nevertheless, object-oriented pro-
gramming usually relies on expensive implementation fea-
tures such as virtual dispatches and dynamic memory alloca-
tion, features not needed when programming assembly or C
on an embedded system. Moreover, reusable object-oriented
software often contains functionality not needed in all appli-
cations, a situation which is inappropriate when memory is
a scarce resource. Last, the feasibility of developing object-
oriented software for low-end embedded system has simply
not been investigated.

We have developed an optimizing compiler and class li-
brary for a restricted version of the Java language, named
JEPES, specifically targeted to low-end embedded systems
as small as 512 bytes RAM and 4KB ROM. JEPES com-
plements existing Java technologies by allowing the same
programming language (Java) and object model to be used
in implementing all parts of a pervasive computing system,
with components ranging from desktop systems to low-end
embedded devices. This paper concerns the feasibility of
running object-oriented programs written in Java on low-
end embedded systems, and we argue that reducing mem-
ory consumption is the critical issue here; studying run-time
efficiency is considered future work.

This paper concerns compilation to low-end embedded
systems. For experiments, we use two different hardware
platforms, based on Atmel and Hitachi chips. The Atmel
platform is a board with an 8-bit Atmel AVR processor (the
AT90S8515 variant), 8KB flash ROM and 512 bytes RAM.
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The Hitachi platform is the Lego Mindstorms RCX brick,
which contains a 16-bit Hitachi H8/300L processor equipped
with 32KB RAM and 16KB EEPROM; I/O is performed us-
ing the LegOS operating system [25]. The Atmel platform
was the initial inspiration for the development of JEPES: in
the context of an industrial project, the question was raised
whether Java programs could be made to run on systems
with only 512 bytes of RAM and 4KB of ROM. The Hitachi
platform served as validation that JEPES could be made to
work with larger systems containing an operating system.

The rest of this paper is organized as follows. Section 2
describes low-end embedded systems with a focus on object-
oriented and Java-based technologies. Then, Section 3 de-
scribes JEPES, our solution for reconciling object-oriented
programming with low-end embedded systems, Section 4
presents our solution for non-intrusive program configura-
tion, and Section 5 reports our experiments with JEPES.
Last, Section 6 presents related work, and Section 7 presents
our conclusions and outlines perspectives for future work.

2. LOW-END EMBEDDED SYSTEMS VS.
JAVA

Java is used in computer systems ranging from PDAs to
servers, although with some variations. Nonetheless, in this
section we argue that existing Java-based approaches are
inappropriate for low-end embedded systems. We first de-
scribe low-end embedded systems, then give an overview of
Java for embedded systems, and last analyze the potential
overheads of using Java for low-end embedded systems.

2.1 Low-end embedded systems
Embedded systems have gradually been put to use every-

where. The ability to replace complex hardwired circuitry
and expensive custom made processors with simple generic
components provides compelling opportunities to manufac-
turers of electronic devices and appliances.

Appliances with embedded processors are often produced
in large quantities, so the unit price is important in deter-
mining the profit that can be made from selling the ap-
pliance. One way of lowering the unit price is by choosing
cheaper and more cost effective parts — a classical engineer-
ing challenge, which the industry already is accustomed to.
Devices with 8-bit processors and a few kilobytes of RAM
and ROM are still significantly cheaper than more resource-
ful 16- and 32-bit counterparts because they require less
advanced technology to produce and they are produced as
generic solutions in large quantities. Moreover, 8-bit proces-
sors often have additional advantages in terms of low power
consumption and higher tolerance toward electrical interfer-
ence.

Although appliances with embedded processors often are
produced in families of products with similar traits and func-
tionalities, software is often developed specifically for each
product without any reuse across the product line. More-
over, the software is typically written in a mix of C and
assembly language, and the design often reflects the actual
hardware entities such as CPU pins rather than the applica-
tion domain. This lack of code reuse increases development
costs and time-to-market. Thus, any technology that im-
proves the reuse of design and implementation would also
be beneficial to commercial enterprises engaged in develop-
ing and producing software for such devices.

2.2 Java
Java is an attractive choice of platform for a number of

reasons. First, object-oriented programming is known to of-
fer advantages in terms of code reuse, and the platform inde-
pendence of Java facilitates reusing implementations across
different hardware platforms. Second, the lack of pointer-
related errors combined with checked exceptions fits well
with the requirements for reliable operation in embedded
systems. Last, Java is rapidly becoming the language of
choice for many developers, so using Java in the embedded
systems helps to leverage their expertise.

For all of its advantages in terms of software development,
Java does have a number of significant disadvantages com-
pared to more traditional languages such as C++. First
and foremost, the Java virtual machine requires additional
resources in terms of memory and processor speed. Sec-
ond, close interaction with the hardware level is unavoid-
able when programming interrupt handlers or manipulating
raw bytes, but Java has limited support for such operations.
Last, C and C++ are simply much more widely accepted in
the industry for use in embedded systems.

The Java standards that relate to embedded systems are
Java Card, Java 2 Micro Edition with Connected, Limited
Device Configuration (J2ME / CLDC) and Connected De-
vice Configuration (J2ME / CDC), and last the Real-Time
Specification for Java (RTSJ).

Java Card is targeted at smart cards with 8/16/32 bit pro-
cessors and as little as 1K of RAM, 8K EEPROM, and
16K of ROM. The class library is mostly specific to
Java Card, and a special byte code format is used [32,
33, 34]. Garbage collection is not supported, so objects
must be statically allocated.

J2ME/CLDC is designed for PDAs, mobile phones and
similar devices with at least 160KB RAM and at least
a 16-bit processor. The class libraries are a scaled
down version of the J2SE core class libraries extended
with functionality specific to embedded devices.

J2ME/CDC is designed for systems with a 32-bit proces-
sor and at least 2MB of total memory. The class li-
braries includes the core class libraries of J2SE.

RTSJ is not specifically targeted to embedded systems, but
embedded systems are often subject to real-time re-
quirements. Among other things, RTSJ extends the
Java programming language with real-time schedul-
ing, interruptible threads, and physical memory ac-
cess. However, the complexity of the RTSJ makes it
likely that it will not be useful in low-end embedded
systems.

Of these standards, Java Card and J2ME are most relevant
to low-end embedded systems; we return to these specifica-
tions later in the paper. The Personal Java standard is also
seen on older PDA designs but has been replaced by CDC.

2.3 Object overheads in embedded systems
In spite of the well-known software development advan-

tages of object-orientation, object-oriented programs are usu-
ally less efficient than their imperative counterparts. On a
standard computer system, the most significant run-time
overheads to take into account when executing Java pro-
grams are interpretation/dynamic compilation, virtual dis-
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patches, memory management, and synchronization [1, 3,
14, 17, 19, 31].

Interpretation and dynamic compilation
Java programs are normally either interpreted or compiled
dynamically, due to the requirement that dynamic class load-
ing be supported. However, embedded devices are generally
slower than conventional computers and workstations, and
there is little or no extra memory available for dynamically
generated code. Moreover, neither approach is suitable for
embedded devices with strict timing requirements and low
response times on external input data. For these reasons,
ahead-of-time (AOT) compilation of Java to native code has
caught on in the embedded systems world, usually at the
cost of disabling dynamic class loading [10, 15, 18, 27, 36].

Virtual dispatches
A virtual dispatch is implemented using an indirect jump,
which causes unpredictable control flow that inhibits com-
piler optimizations and may interfere with hardware opti-
mizations such as pipelining and instruction pre-fetching.
Low-end embedded systems however do not normally rely
on hardware optimization for speed, and thus it would ap-
pear that virtual dispatches could be considered inexpensive
in terms of runtime performance. Nevertheless, when com-
piling Java for the Atmel AVR processor, we need 9 instruc-
tions to implement a virtual dispatch, whereas a direct jump
only takes 3 instructions. The additional 6 instructions may
not be an problematic overhead in terms of execution speed,
but are unavoidably a significant overhead in terms of code
size.

Memory management
Dynamic memory allocation is considered central to most
object-oriented languages, and automatic memory manage-
ment in the form of garbage collection is common to most
modern object-oriented languages. However, on a low-end
embedded system, the amount of memory may be so limited
that dynamic memory allocation becomes infeasible. More-
over, memory for storing the implementation of the garbage
collector is a scarce resource, and real-time constraints are
difficult to ensure in the presence of garbage collection.

The solution in JavaCard is to allow dynamic memory
allocation, but not guarantee garbage collection. (Thus, a
faulty program that instantiates too many objects during its
execution may fail at some point.) As an alternative to the
JavaCard solution of static allocation, stack allocation can
be used, which is for example possible in Realtime Java.1

However, restrictions must be imposed on stack allocated
objects to ensure that they do not escape the method in
which they are allocated.

In a low-end embedded system with enough memory to
make garbage collection feasible, real-time constraints must
often be taken into account to ensure responsiveness. How-
ever, real-time constraints are difficult to satisfy using stan-
dard garbage collection algorithms, since a collection can
be triggered at any point where objects are instantiated,
and can potentially need to traverse the entire heap to copy
live data or free dead data. Incremental collection allows

1Stack allocation can also be performed as an optimization
by a compiler, for example based on an escape analysis [8,
35, 4], but does not normally guarantee that no objects are
allocated in the heap.

garbage collection to be done step-by-step, but typically re-
sults in a significant space overhead [13], as exemplified by
the Treadmill real-time collector [2]. Recent work on the
Treadmill collector has produced more space-efficient algo-
rithms, but all objects still need to be kept in doubly-linked
list, and this algorithm can still result in fragmentation [21].
Alternatively, more efficient incremental algorithms can be
made deterministic by employing constant-time root scan-
ning [30]

Synchronization
In a language such as Java that directly integrates multi-
threading primitives, thread synchronization can be a sig-
nificant overhead. Synchronization usually involves access-
ing a per-object lock using either atomic operations (in the
non-contended case) or operating system calls (in the con-
tended case) [1, 19]. Multiple threads implies multiple ex-
ecution stacks and additional bookkeeping, which can be
inappropriate for a low-end embedded system. Rather, pro-
grammable interrupts are used to handle events as they ar-
rive, and timer-based interrupts can be used for scheduling
periodic tasks. The interrupt counterpart to synchroniza-
tion is disabling interrupts in critical zones, which for exam-
ple is an inexpensive operation on our Atmel hardware.

Synthesis
The overhead of interpretation can be eliminated by ahead-
of-time compilation, and thread synchronization is not an
issue on low-end embedded systems. Memory management,
on the other hand, is a central issue, one that is essential
to address for enabling the execution of object-oriented pro-
grams on low-end embedded systems. Virtual dispatches
may be an issue in terms of speed and size, but thorough
experiments similar to those performed for workstation-size
systems would be needed to reveal if this is the case (e.g., [14]).
In this paper, we address the memory management issue,
and leave the investigation of virtual dispatches to future
work.

3. JEPES
We now present the JEPES platform. This section gives

an overview of the system, including the JEPES program-
ming language and the JEPES compiler, and discusses var-
ious issues pertaining to predictability of the compilation
and execution of JEPES programs.

3.1 An overview of the JEPES platform
JEPES is a high-performance, customizable platform for

the execution of Java bytecode in embedded systems. JEPES
is targeted towards low-end embedded systems with as lit-
tle as 512 bytes of RAM and 4KB of ROM, but is scal-
able up to KVM-sized systems (32-bit processor with 1MB
of RAM/ROM). The JEPES platform consists of a Java-
like language (see Section 3.2) and an optimizing compiler
for Java bytecode (see Section 3.3). JEPES is intended for
use in conjunction with standard Java development environ-
ments.

Figure 1 presents an overview of how the JEPES compiler
is used to compile programs. Programs are developed in
Java using a standard development environment, and com-
piled to class files. In addition, interface-directed configura-
tion is used to instrument the program with domain-specific
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Figure 1: Overview of using the JEPES compiler

information. Interface-directed configuration is a key fea-
ture of JEPES that allows the programmer to annotate a
program with information using standard Java interfaces;
interface-directed configuration is described in detail in Sec-
tion 4. The JEPES equivalent of native methods is assembly
macros, which must also be supplied to the compiler.

The output of JEPES is either a set of optimized class files
or a binary, self-contained program. During compilation to
binary code, the JEPES runtime environment is automati-
cally customized to and integrated with the application at
hand in order to reduce memory usage. Thus, the applica-
tion is produced as a self-contained, monolithic entity suit-
able for running directly on the hardware or integrating with
an operating system. JEPES is configurable with regards to
exception handling, threads, and garbage collection: excep-
tions are supported only if they are used in the application,
and the other features are controlled by interface-directed
configuration.2

The JEPES native interface is based on inlining assembly
macros directly into the compiled Java code, which permits
direct and efficient access to the hardware as well as existing
native software such as operating system routines and legacy
application code (see Section 4 for an example).3 This fea-
ture enables JEPES to e.g. efficiently use the thread model
of the underlying operating system. The tight integration
with existing native software allows object orientation to be
introduced incrementally into existing products during their
evolution by gradually replacing components, which greatly
reduces the initial design costs.

2The current implementation of JEPES does not support
garbage collection and has no default API for threads; intro-
ducing basic support for these features is however straight-
forward. Exceptions are supported by the analysis frame-
work, but are not currently supported in the runtime envi-
ronment.
3Calls to external native methods can still be generated.

3.2 The JEPES language
JEPES is based on the Java programming languages, and

the compiler reads Java class files in the standard class for-
mat. Nonetheless, JEPES has a different standard API, a
different set of primitive types, and imposes restrictions on
object operations when garbage collection is not used. In
addition, object finalization is not supported, and all classes
are initialized prior to execution of the main method (the
standard Java semantics dictate that the static fields of a
class are initialized only when the class is used for the first
time).

In order to reduce the overhead of using 32-bit numbers
on 8-bit and 16-bit processors, integers have been redefined
such that int is 16 bit and long is 32 bit. Furthermore, char
is 8-bit and String does not support Unicode characters,
which enhances the interoperability with C-based, existing
code. Support for float and double is platform dependent.

When garbage collection is not used, which is typically
the case for low-end embedded systems, objects must be
either statically allocated or stack allocated. Objects that
are allocated within a static block of a class are statically
allocated before the execution of the program (but are ini-
tialized when their constructor is run). All other objects
must be stack allocatable, meaning that they must not be
used after returning from the method in which they are in-
stantiated. To ensure memory consistency, stack allocated
objects can only be stored in objects that are allocated in
the same stack frame or higher on the stack. This invariant
is enforced by the compiler.

3.3 The JEPES compiler
The JEPES compiler takes Java bytecode as input and has

backends for the Atmel AVR processor, the Hitachi H8/300L
processor (used in the Lego Mindstorms series of products),
the i386 architecture, and Java bytecode. For the native
backends, virtual dispatches and switch instructions are gen-
erated as binary search trees, due to the significant cost of
indirect memory access on the target hardware (moreover,
class hierarchies are usually not deep in the programs we
consider).

The JEPES compiler uses a context-insensitive, whole-
program dataflow analysis which incorporates constant prop-
agation, sign analysis, CHA [12], and escape analysis [8].
The flow of values through object fields is also traced by
the analysis, but only on a per-class basis. The analysis
results are used to perform standard optimizations such as
constant folding, branch prediction, etc., as well more spe-
cific optimizations such as virtual dispatch elimination, in-
lining4, stack allocation of objects, and elimination of object
field operations that manipulate constant values. After dead
code elimination, all fields, methods and classes that are de-
tected as being unused are eliminated from the program.
The lack of pointers in Java facilitates safely performing ag-
gressive optimizations that would be difficult to perform in
languages such as C or C++.

When the analysis can globally determine the state of an
object and where it is used, the object can be completely
eliminated from the program; we refer to such objects as
ghost objects. Ghost objects can be used in the program
without any overhead. However, the JEPES compiler can

4Inlining is only used when the program size can be reduced,
e.g. when a method can be called from only one call site.
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currently only eliminate ghost objects with invariant state.
Nevertheless, ghost object elimination does for example al-
low the stream abstraction in the JEPES API (which covers
serial ports and similar devices) to be used without any over-
head, subject to the analysis results derived.

3.4 Predictability
Predictable behavior is a critical issue in embedded sys-

tems, in particular in the case of real-time systems. JEPES
programs can execute without garbage collection and hence
with predictable execution times: static object allocation is
performed during initialization, and stack allocation of ob-
jects takes a fixed number of instructions. The worst-case
cost of virtual dispatches and class cast checks depends on
the depth of the class hierarchy, which is a constant for a
given program.

When a JEPES program is modified by adding new classes,
it cannot be guaranteed to preserve its current timing char-
acteristics. Virtual dispatches that can be eliminated in one
version of the program may need to be preserved in an ex-
tended version of the program (e.g., one that relies on a
higher degree of polymorphism). Similarly, stack allocation
and ghost object elimination may no longer be possible in a
modified version of a program. In the case of stack allocation
and ghost object elimination, the interface-directed configu-
ration mechanism can be used to ensure that a compile-time
error is generated when this is the case, but there is currently
no similar mechanism for virtual dispatches.

4. INTERFACE-DIRECTED CONFIGURA-
TION

4.1 The basic idea
Interface-directed configuration provides a flexible and pow-

erful mechanism to enable per-class configuration for govern-
ing the compilation process. The solution is non-intrusive,
because it does not introduce new syntax to the Java pro-
gramming language, and it does not rely on “magic”, hard-
coded class names to be recognized in the compiler. Instead,
the compiler matches Java interfaces with externally sup-
plied configuration files. The configuration files can then be
used to attach additional semantic meanings to the classes
that implement these interfaces, and to enable special be-
havior of the compiler on selected methods and fields.

As an example of interface-directed configuration, con-
sider the JEPES program fragment shown in Figure 2. The
class InputProcessor defines a method handle which can per-
form interrupt-driven input. Interrupt handlers require spe-
cial entry and exit code, and the interface InterruptHandler

directs the compiler to generate such code. The semantic
meaning of the interface, that the handle method is an in-
terrupt handler, is defined in a separate configuration file
(InterruptHandler.jid).

4.2 Configuration directives
The JEPES interface configuration mechanism supports

the following kinds of directives: assembly macros, interrupt
handlers, external access to Java classes, stack allocation
and ghost allocation.

Substitution of methods with inlined assembly macros
Assembly macros provide a high-performance alternative to
native methods. By constraining what can be written in the

class InputProcessor implements InterruptHandler {
public static void handle() {
... read input from physical memory address ...

}
}

InputProcessor.java

interface InterruptHandler {
// empty marker interface

}

InterruptHandler.java

InterruptHandler {
methods {
public static void handle() {

interrupt-handler {
vector = 0x0E;

};
}

}
}

InterruptHandler.jid

Figure 2: Interrupt handling in JEPES.

macros, the compiler can inline the macros into the Java
code, which would not be possible with standard Java na-
tive methods. The macros are written in the native assembly
language of the target platforms with additional macro syn-
tax for symbolic register names and reservation of “locally
used” registers, which allows compiler-generated parameter
passing and save/restore of registers.

As an example, consider the code fragments shown in Fig-
ure 3. The serial port encapsulation of the JEPES library
implements most of its functionality in Java (3a), but the
methods for reading and writing bytes are written in assem-
bly macros, as indicated by the interface configuration file
(3c). The body of a Java method marked as a macro is ig-
nored by the compiler and can thus contain arbitrary Java
code; this feature is used in simulated testing environments
where the native code needs to be implemented in pure
Java. Assembly macros for the Atmel AVR platform are
also shown (3d and 3e). The register parameters <@R> and
<b> in the assembly macros are substituted with real regis-
ter names during compilation. The parameter <@R> maps to
the register where the caller expects to find the (primitive
typed) return value, and the parameter <b> maps to the
register that holds the formal parameter of writeByte().
Alternatively, the implementation could have been done by
writing accessor macros for all of the ports and the special
purpose registers on the Atmel AVR port, enabling even
more of the serial port code to be written in pure Java.

Method entry and exit code for interrupt handlers
JEPES makes it possible to write interrupt handlers in pure
Java, as was shown in the example of Figure 2. The compiler
extends all methods with code that manages the call stack
and saves and restores the contents of registers. However,
interrupt handler methods often require an alternative call
semantics, because the calls takes place out of the ordinary
flow of control.
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package jepes.io.bus;
public class SerialImp implements jepes.io.bus.ISerialImp {

public int readByte() {
return 0; // default return value; macro

}

public void writeByte(byte b) {
// macro

}
}

(a) File jepes/io/bus/SerialImp.java

package jepes.io.bus;
interface ISerialImp {

public int readByte();
public void writeByte(byte b);

}

(b) File jepes/io/bus/ISerialImp.java

ISerialImp {
methods {
public int readByte() {

macro;
}
public void writeByte(byte b) {

macro;
}

}
}

(c) File jepes/io/bus/ISerialImp.jid

; Atmel AVR macro for readByte()
; wait until UART is ready
Receive:

SBI UCR,RXEN
SBIS USR,RXC
RJMP Receive

; write data to return register
IN <@R>,UDR

; clear the receive flag on UART
CBI UCR,RXEN

(d) File jepes/io/bus/ISerialImp/readByte__B.asm

; Atmel AVR macro for writeByte()
; wait until UART is ready
Send:

SBI UCR,TXEN
SBIS USR,UDRE
RJMP Send

; write the output byte
OUT UDR,<b>

; clear the send flag on UART
CBI UCR,TXEN

(e) File jepes/io/bus/ISerialImp/writeByte_B_V.asm

Figure 3: Serial port implementation using assembly
macros

MyApp

+main(): void

jepes.lang.IMain

}
}

methods {
static void main() {
external−access;
}

IMain {

Class

Configuration
Interface

jepes/lang/IMain.jid

Figure 4: The relation between Java interfaces and
interface configuration files

Externally accessible classes, methods, and fields
The optimizer needs to be told where the whole-program
analyses of the Java code cannot be guaranteed to pro-
vide all of the program state information. Otherwise, overly
optimistic optimizations would be applied to e.g. interrupt
handler routines, and fields that map to ports or memory
mapped addresses.

Stack allocation of objects
The stack allocation directive provides a mechanism for guar-
anteeing stack allocation of objects even when garbage col-
lection is used. It is a compile-time error if an object in-
stantiated from a stack-allocatable class cannot be stack al-
located. Thus, a method that only uses stack-allocatable
objects is guaranteed not to be interrupted by a garbage
collector, and hence has a fixed execution time, which en-
ables real-time programming.

Defining stack allocation as a per-class attribute is coarse-
grained, and a per-allocation-site granularity would proba-
bly be more appropriate in some cases. This limitation has
so far not been a problem, but this may change as we exper-
iment with compiling larger JEPES programs. We note that
it would be convenient if Java’s facility for defining anony-
mous classes could be used for providing per-allocation-site
granularity, e.g.:

Iterator i = new VectorIterator(vector)
implements StackAllocation {};

However, Java only allows such anonymous classes to add
new members, not to implement new interfaces.

Ghost allocation
Ghost allocation is used similarly to stack allocation of ob-
jects, but provides a mechanism for guaranteeing the elim-
ination of objects with immutable contents, referred to as
“ghost objects.” It is a compile-time error if an object that
was marked as ghost-allocatable could not be eliminated
from the program, ensuring that such objects never incur
any overheads in the compiled program.

4.3 Implementation
Interface-directed configuration is implemented as follows.

The compiler matches Java interfaces with configuration
files based on the package and interface name, as shown in
Figure 4. A configuration thus has a “per-interface” gran-
ularity, but any matched configuration file has effect on all
implementing classes. Each configuration file contains one
or more compiler directives that either may be general to
the class, or to a specific method or field in implementing
classes. The method- and field-specific directives both cover
non-static as well as static entities, in contrast to Java where
interfaces only contain non-static method declarations.
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Figure 5: Relative size reduction

5. EXPERIMENTS
To evaluate the size reduction performed by the JEPES

compiler, we have applied JEPES to two sets of programs:
a number of demo programs included with the KVM virtual
machine, and a number of programs written specifically for
JEPES on a low-end embedded system. In all experiments,
the size before optimization is reported based on the tran-
sitive closure of the classes referenced from the program (as
opposed to including all classes from the entire class library).
The results are summarized in Figure 5 by the relative size
reduction (25% means that the program only takes up a
quarter of the space that it did before). We now discuss the
results in detail.

The KVM demo programs are KvmHttpTest, Dragon, and
EightQueens. These programs are not appropriate for execu-
tion on low-end embedded systems, as they rely on a graph-
ical user interface. On the other hand, they are relatively
large Java programs written in an object-oriented style of
programming, which makes them interesting for evaluating
the effectiveness of the optimizations applied by JEPES. In-
deed, JEPES can be applied to these programs as a bytecode
to bytecode compiler, which significantly reduces their size
before loading them onto e.g. the KVM virtual machine.5

On average, JEPES reduces the size of the KVM demo
programs to 32.6% of their original size. Table 1 provides
more details. This table compares the size of the class files
(“J-size”) and their contents (number of fields, methods,
and bytecode instructions) before optimizations, after using
CHA to remove unneeded classes and methods, and after
performing all optimizations supported by JEPES. In ad-
dition, the number of heap allocation sites that could be
converted into stack allocation is reported. As can be seen,
the CHA provides a large advantage in size compared to the
transitive closure, and should probably be considered min-
imum for compilers for low-end embedded systems. More-
over, the full selection of optimizations performed by JEPES
provides a significant advantage over the result obtained by
applying CHA.

The native JEPES programs are two different versions of a
CAN-bus [5, 7] to serial connection bridge, a valve controller,
and an RCX application. The static version of the CAN-
bus to serial bridge is written in C-style using static meth-

5Optimizations such as stack allocation and virtual dispatch
elimination cannot be represented in the bytecode format,
but could be output as annotations in the class files and used
by the virtual machine for performing optimizations [26].

ods, whereas the object version relies on ghost allocation to
use objects to represent e.g. streams without any significant
overhead in terms of size. The valve controller monitors and
controls a fictional valve over a serial line, and the Lego RCX
application controls a lift built from Lego bricks. The Lego
lift program is compiled to native Hitachi H8 instructions,
the other programs are compilated to native Atmel AVR
instructions. On average, JEPES reduces the size of these
programs to 18.9% of their original size, when compiling
from Java bytecode to native code. Table 2 provides more
details, including the size of the compiled program both as
Java bytecode and as native code. For these programs, the
majority of the size reduction was obtained using CHA. As
for the size of the native code, we have found that straight-
line C code compiled using the commercial IAR Embedded
Workbench C++ compiler for Atmel AVR is up to 2.5 times
more compact than that generated by JEPES for equivalent
Java code. We believe this difference is due to the immatu-
rity of the JEPES code generator.

JEPES currently provides no automated way of comput-
ing the total memory footprint of an application. Manual
inspection of the assembly code generated for the static ver-
sion of the CAN–serial bridge reveals that this program uses
roughly 50 bytes of RAM (excluding registers). Thus, the to-
tal footprint of this application is 1511 bytes of ROM and 50
bytes of RAM, which is several orders of magnitude smaller
than what is required by an interpretive apporach such as
Sun’s KVM.

6. RELATED WORK
The work that most closely relates to the application do-

main of JEPES is the existing JavaCard and J2ME specifi-
cations from Sun, described in Section 2.2. Unlike JEPES,
both JavaCard and J2ME permit dynamic loading of classes,
which makes ahead-of-time compilation with all of its as-
sociated optimizations impossible. Nonetheless, size-based
optimizations can be applied to Java systems with dynamic
loading, for example by compacting the run-time representa-
tion of the program as in JavaCard or performing bytecode
factorization [9]. JEPES already uses a highly compact class
representation, but code factorization could perhaps be use-
ful, depending on the characteristics of the target embedded
system.

Compilation of Java for low-end embedded systems can
also be done by compiling to C as an intermediate language.
This approach leverages existing, mature compiler technol-
ogy ensuring that high-quality low-level code is generated,
as shown by Nilsson, Nilsson and Ekman [23, 24]. Here, the
primary focus is on threads and real-time garbage collection,
which is supported by a run-time system that takes up only
10KB of ROM and 1KB of RAM on an Atmel-based system
with 128KB of ROM and 64KB of RAM (leaving 118KB of
ROM and 63KB of RAM for the application). JEPES cur-
rently does not support threads and garbage collection, but
can be used on much smaller systems. We expect that simi-
lar tecniques could be used in JEPES to implement garbage
collection and multithreading for larger systems. The deci-
sion in JEPES to directly generate native code was moti-
vated primarily by the need for providing debugging infor-
mation at the source code level, which is difficult when using
C as an intermediate language.

The optimization techniques used in the JEPES compiler
are mostly standard, although they are focused on decreas-
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unoptimized Java CHA-optimized Java fully optimized Java
Program J-size fields meth. J-ins. h-alloc fields meth. J-ins. J-size fields meth. J-ins. h-alloc s-alloc
KvmHttpTest 67779 119 528 7400 32 119 209 2198 23121 31 93 1048 6 26
Dragon 69264 145 546 7655 32 145 163 1383 22345 45 88 994 6 26
EightQueens 67304 128 539 7402 32 128 184 1587 21227 32 89 943 6 23

Table 1: JEPES bytecode to bytecode compilation results

unoptimized Java fully optimized Java native
Program J-size fields methods J-ins. J-size fields methods J-ins. ghost N-ins. N-size
CAN–serial bridge (static) 8784 8 106 336 3850 0 7 94 0 234 1511
CAN–serial bridge (object) 10653 19 139 371 4561 1 10 107 1 244 1601
Valve controller 6773 10 88 252 2758 10 6 78 3 221 1335
Lego lift 6547 4 69 286 3377 3 15 134 0 497 1562

Table 2: JEPES bytecode to native code compilation results

ing program size rather than increasing performance. Com-
pilation with code-size constraints can be expressed as an
integer linear programming problem covering the whole pro-
gram, which allows highly compact code to be generated, as
shown by Naik and Palsberg [22]. JEPES has no similar op-
timization of low-level code, but rather performs high-level,
space saving optimizations at earlier stages in the compiler,
which would be complementary. In particular, we note that
ghost allocation, which more closely resembles the interpro-
cedural propagation of complex values performed by pro-
gram specialization rather than a standard compiler tech-
nique, is guaranteed not to increase program size (unlike
standard program specialization techniques) [28].

JEPES uses interface-directed configuration to instrument
the Java program with additional semantic information at
the class and method level. Such instrumentation of Java
programs is typically done using Javadoc-style comments.
Javadoc-style comments have been used for expressing in-
variants (e.g, [11, 20]), but are inappropriate for annotations
that modify the semantics of the program, such as those used
in JEPES.

7. CONCLUSION AND FUTURE WORK
Traditionally, applications for embedded devices have been

programmed in C (and perhaps assembler) using a procedu-
ral programming style. However, many other areas of the
software industry have taken a step towards object-oriented
methods, which has resulted in significant boosts in produc-
tivity. With the introduction of JEPES, the use of object-
oriented programming in embedded devices has now become
possible. JEPES makes Java technology available on even
the smallest devices, enabling the construction of devices
with advanced built-in functionality that are both cost and
power efficient. The use of Java as a language facilitates ag-
gressive, space-saving optimizations: on our JEPES-specific
programs, the compiler reduced the program size to 18.9%
of the original on average, which allowed the programs to
be stored in approximately 1.5KB of ROM, including run-
time support. For the KVM-based Java programs, the size
was reduced to 32.6%. Moreover, our experiments clearly
demonstrate that CHA should be considered a baseline op-
timization when compiling programs for low-end embedded
systems.

In terms of future work, our primary interest is inves-
tigating the use of object-oriented frameworks and design
patterns on low-end embedded systems. Frameworks per-
mit significant reuse of design and implementation [29], but
often with an overhead in terms of overly general code. For
JEPES to efficiently compile programs based on frameworks
to low-end embedded systems, more precise analyses and
more aggressive optimizations may be needed, but larger
experiments are needed to reveal if this is the case. De-
sign patterns are reusable micro-architectures that increase
reusability and adaptability of code [16]. However, the pro-
gramming style imposed by JEPES for low-end embedded
systems (e.g., only static and stack allocation of objects)
may not be appropriate for implementing most design pat-
terns.

Availability
JEPES is a commercial product of Mjølner Informatics, and
is currently available on request as a binary distribution.
Detailed information on JEPES can be found in [6].
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