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ÁRPÁD BESZÉDES, RUDOLF FERENC, AND TIBOR GYIMÓTHY
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Program code compression is an emerging research activity that is having an impact in
several production areas such as networking and embedded systems. This is because
the reduced-sized code can have a positive impact on network traffic and embedded
system costs such as memory requirements and power consumption. Although code-size
reduction is a relatively new research area, numerous publications already exist on it.
The methods published usually have different motivations and a variety of application
contexts. They may use different principles and their publications often use diverse
notations. To our knowledge, there are no publications that present a good overview of
this broad range of methods and give a useful assessment. This article surveys twelve
methods and several related works appearing in some 50 papers published up to now.
We provide extensive assessment criteria for evaluating the methods and offer a basis
for comparison. We conclude that it is fairly hard to make any fair comparisons of the
methods or draw conclusions about their applicability.
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1. INTRODUCTION

Data compression in general is a field
almost as old as information technology
itself. There are many reasons for the im-
portance of this issue that probably need
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not much further explanation. Still, one
of the motivations is that the storage me-
dia has always been limited, although the
capacity and its relative costs are con-
stantly improving. However, the require-
ments for storing large amounts of data
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are probably increasing even more signifi-
cantly. Hence, if the same amount of infor-
mation can be stored using less space (i.e.,
in a compressed form), this—among other
things—saves money. Another issue (espe-
cially in the “wired-up” world of today) is
the limited bandwidth of communication
channels. In this case, a compressed data
set with the same information content is
also preferable.

A special case of data compression is
the compression (or more generally, size-
reduction) of program code.1 There are
many reasons for making a distinction be-
tween data and code compression. One is
the fact that if we have a certain amount of
knowledge in advance about the structure
of the code, it may be more compressible.
Since the compression method is more spe-
cialized, it can include more specifics such
as hardware implementation and special-
ized encoding strategies.

Code compression is very important in
some areas where minimizing the stor-
age requirements is even more empha-
sized. This primarily includes embedded
(mobile, control) applications. In these ar-
eas another issue has recently become
quite important too, namely the issue of
energy-saving in these systems. Interest-
ingly, this issue appeared to be related in
many ways to code compression. The two
most obvious examples for this are the ob-
servations that executing fewer instruc-
tions and accessing external memory de-
vices less frequently can both reduce the
energy needs of a system. Thus, several
different approaches have been proposed
in the literature concerning the correla-
tion between energy saving and code com-
pression. Hence, we will pay special atten-
tion to these issues here as well.

Over the years, many different the-
ories and, more importantly, practical
implementations have been elaborated
and described as compression methods in
the literature. It is not our goal to de-
scribe all of these. As a matter of fact,

1The notion of program code should be taken in a
broadest sense, including source code, various types
of intermediate representation and machine code as
well.

many good textbooks exist on this topic,
for example, Nelson and Gailly [1995],
Hankerson et al. [1997], and Bell et al.
[1990]. However, we did not find any good
articles that would survey the various code
compression methods and offer some com-
parisons or, at least, some evaluations of
these. (A good and extensive bibliography
of code compression methods has, how-
ever, already been prepared by van de Wiel
[2001].)

This article surveys some 50 articles
devoted to code-size reduction methods
published from 1984 to date, which are
grouped into 12 principal methods along
with several related works. We provide
a general classification and assessment
of various methods and evaluate various
properties of theirs.

One of the objectives of this article is to
help the interested reader in choosing the
most appropriate methods (or their combi-
nation) for a specific need. This may seem
a rather challenging task, but we feel that
a survey like this can be of great help in
such situations.

Since code-size reduction covers many
techniques and application specifics that
could be investigated from several aspects,
we tried to emphasize the space of appli-
cability of the methods. In particular, the
need for hardware-based modification is
discussed.

Naturally a survey cannot hope to
cover every possible issue of the subject.
Therefore, we tried to concentrate on the
above-described objectives and evaluation
aspects. So, let us summarize what this ar-
ticle is not about. First of all, this survey
is not meant to be complete. It is meant
to be diverse in a sense to incorporate as
many different kinds of methods as pos-
sible in order to give an overall picture
of the recent results and the state-of-the-
art of the subject. This article is not a
textbook for providing an introduction to
code compression and an overview of com-
monly accepted methods. We do not wish
to make direct confrontations of competing
methods; we only give direct comparisons
where it is absolutely feasible. Finally, we
did not include those methods to the sur-
vey that are partly related to some of the
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methods discussed, but which do not di-
rectly deal with code-size reduction (e.g.,
other energy saving methods).

During the preparation of this survey,
we encountered several problems concern-
ing the survey methodology itself and the
assessment and evaluation of the meth-
ods. We feel that it is important for the
reader to bear these in mind when evalu-
ating the methods discussed. Namely:

—A comparison of methods is not always
representative and is rarely feasible
anyway. We make direct comparisons
only where applicable, which means
that the measurement and other as-
sessment results must be “compatible,”
meaning that the environment of the
measurement was the same.

—Naturally, we could not examine every
available method because the list of re-
lated publications is rather long (see, for
example, van de Wiel [2001]). Besides,
some important publications may have
escaped our attention. Nevertheless, we
tried to make this survey as representa-
tive as possible.

—In Section 2, we provide definitions
of terms and basic algorithms/tech-
niques that we will use or refer to
throughout the article. This is required
because the terminology of the subject
literature is currently far from being
consistent regarding the terms and no-
tions. Hence, we tried to gather together
the most widely accepted terminology.

—The assessment of the methods along
classification lines is, of course, a dif-
ficult issue. In many cases, it is not
possible to make a strict distinction of
whether the method is hardware- or
software-based (a traditional classifica-
tion model), say. Thus, we chose a classi-
fication which represents the properties
of methods in several dimensions as de-
scribed in Section 3.

—One published article does not always
cover one distinct method, which means
that a set of related papers may describe
the same method (or its derivatives) or
that a certain publication may contain
a description of more than one distinct

method. Therefore, our assessment (in
Section 4) is organized around distinct
methods and not according to individual
articles.

—We would also like the reader to be
aware of the following. We present some
quantitative and/or qualitative mea-
surement results that were given in
the publications using different numer-
ical data (e.g., compression ratios, exe-
cution times). At certain places (mostly
in Section 5), we apply these pieces of
data to evaluate the various methods
(and sometimes to compare them with
each other). We cannot take any respon-
sibility regarding the correctness of this
data since we could not test and evalu-
ate every implementation of the meth-
ods investigated.

This article is organized as follows:
Section 2 provides some necessary back-
ground information to make the sur-
vey and the articles easier to follow. In
Section 3, we discuss in detail our criteria
that will be used for the assessment and
classification of the code-size reduction
methods—the theme of Section 4. The re-
sults of the assessment, comparison, mea-
surements and their evaluation are given
in Section 5. We round off the article with
a summary, an evaluation of the survey
methodology and list some conclusions as
well.

2. BACKGROUND

This chapter furnishes some background
knowledge in order to be able to dis-
cuss the methods presented in this sur-
vey in a consistent manner. First, we
briefly overview some basic definitions re-
lated to compression.2 Then we describe
how these general concepts can be applied
to compressing program code, emphasiz-
ing the important differences. Finally, we
overview some of the most important basic
algorithms for compression, which are re-
ferred in many of the publications in this
field.

2Note that we will use a slightly narrower defini-
tion of compression throughout this article. This is
described later in this section.
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2.1. Definition of Terms

This section contains information that de-
fines and clarifies concepts utilized in the
rest of the article. It will be of particular
benefit to those unfamiliar with compres-
sion techniques.

2.1.1. Compression. The most general
and straightforward definition of the term
“compression” (or the process of “com-
pressing”) could be given as: “storing data
in a format that requires less space than
usual.” By storing, we mean any kind of
representation of the data including its
transmission (this is usually referred to
as the encoded data). Data in the previous
definition should be read in a most general
form (including program code). Finally, by
usual, we mean the unaltered input of the
compression process.

In this survey, we use the term “code
compression” for reducing the size of pro-
gram code (either source-, machine- or
other) by its equivalent (lossless) repre-
sentation in another form. Usually, this
means the application of various compres-
sion methods based on some statistical in-
formation that reduce the entropy of the
input (see the next paragraph).

Analogously to compression, the term
decompression is used for the process of
applying it on a compressed data set in or-
der to obtain the original input sequence.

2.1.2. Theoretical Background for Compres-
sion. The theory behind compression is
based on results of information theory
(see, e.g., Hankerson et al. [1997]). In
this section, we will then review some
terms from information theory that are
needed in our further discussion. Note
that these definitions are not mathemati-
cally precise, but they should be sufficient
for grasping the basic processes involved
in compression.

We define the input for the size-
reduction method (in our case program
code) as a sequence of input symbols. This
sequence might be simply the bits or bytes
of the input file or it might be bigger en-
tities like tokens for compression. The in-
put sequence may contain values from a

fixed set of symbols. The basic idea behind
most compression algorithms is to repre-
sent each input symbol with a code that
will, with the other codes, produce an over-
all smaller encoded sequence.

Each symbol in the input has a cer-
tain probability value, which is in the
simplest case the frequency of occur-
rence of the symbols in the input. Most
compression methods exploit this at-
tribute of the input symbols to pro-
duce a smaller output sequence (by en-
coding the most probable symbols with
short codes). More generally, the sequence
X is a random variable x with a set
of possible outcomes (input symbol val-
ues), AX ={a1, a2, . . . , ai, . . . , aN }, having
probabilities {p1, p2, . . . , pi, . . . , pN }, with
P (x=ai)= pi, pi ≥ 0 and

∑
x∈AX

P (x)= 1.
The size-reduction of a sequence X is ob-

tained by utilizing its information content,
that is, if there is less information stored
by the sequence we can represent it in a
shorter encoded sequence. In other words,
the information content is the uncertainty
of the sequence: the more information is
“squeezed into” the sequence the more
“uncertain” we are about predicting the
symbols, that is, coding them efficiently.
The information content can be measured
by the entropy of X using the following
formula:

H(X ) = −
∑

x∈AX

P (x) log2 P (x)

Basically, this formula gives the minimum
average number of bits required to encode
the symbols in the given sequence. If H(X )
is multiplied by the number of symbols in
the input sequence, we get the theoreti-
cally minimal size (in bits) of the encoded
sequence that can be obtained.

2.1.3. Compression Model. As remarked
previously, most of the various compres-
sion methods are based on exploiting the
information content of the input sequence
that is to be compressed. This information
content is modeled by various statistical
computations on the input sequence like
the probabilities of the symbols.
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To utilize the knowledge about the
amount of redundancy (and entropy) in
the input and to obtain the best results
(best compression ratios), two tasks must
be cleverly performed: create such mod-
els (1), which—by utilizing the statistics
of the input—can “guide” the coding pro-
cess most productively by assigning suit-
able codes to the symbols (2) Nelson and
Gailly [1995].

Hence, most compression methods con-
tain a separate modeler and coder. These
two can be treated as separate topics for
research, but they are usually fine-tuned
for each other. The decoder, on the other
hand, implements the inverse operation
while using the same data structures. It
is possible to use the same coding method
with different models that yield different
results.

Modeling can mean anything from the
simplest probability by counting the fre-
quencies of the symbols to sophisticated
model creation methods. (These are de-
scribed when we dealing with the corre-
sponding methods, but some discussion
about the most important modeling tech-
niques is presented in Section 2.3.)

Similarly, there are many different ways
of coding the symbols, such as Huffman
and arithmetic (see Section 2.3) coding.

Theoretically, for any compression al-
gorithm there must exist an input that
produces a larger result (if all inputs gen-
erated smaller outputs, there would then
exist an output corresponding to two dis-
tinct inputs). The trick is to use a model
that maximizes the probability of detect-
ing redundancies in the input data, and
one should know beforehand that inputs
that lead to poor compression ratios would
not happen in practice, that is, inputs with
no or little redundancy of the kind we can
detect should not occur in practice.

2.1.4. Compression Ratio. We use the fol-
lowing definition of the compression ra-
tio. The compression ratio R is defined
as c/C where c is the size of the com-
pressed output and C is the size of the in-
put. When expressed as a percentage P
then P = (1 − R) · 100. For example, a

compression ratio of 40% means that the
result now occupies 60% of the original
space, so percentages indicate the amount
of space saved. This survey will employ
this convention, but some articles use the
definition P = R ·100. In addition, it is not
always clear in the literature if the ratios
include the data needed for the decompres-
sion like code tables. Therefore, the com-
parison of different compression ratios is
not always possible.

In the literature, the ratios are pre-
sented and interpreted in many ways. The
given number can represent the worst, av-
erage, or best case. This is one of the prob-
lems that we face that makes a unified
evaluation of the methods difficult.

2.1.5. Compaction. Compacting the pro-
gram code (or other type of sequential
data) differs from the method of “compres-
sion” described above in that it creates an
(equivalent) transformation of the input
using the same form. The most significant
difference with compression is that there
is no need to decompress the code since it is
directly interpretable by the client (there
is no difference between the type of the
uncompacted and compacted data). Bell
et al. [1990] describe compaction as “irre-
versible compression” meaning that once
the data is compacted its original version
cannot be restored (since there is no de-
compression at all).

The basic methods that are involved
in code compaction are some of the tra-
ditional compiler optimization methods
(such as the elimination of useless code)
and code factoring (by which repeating
fragments are factored out). These are
described in detail by the corresponding
methods.

In the field of code-size reduction, these
compaction techniques are typically ap-
plied to machine-code programs.

2.2. Compressing Code

Many compression algorithms can be
applied to whatever type of input data—
including various types of program code
(source-, intermediate-, machine-, etc.).
However, compressing program code
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differs from general data compression
techniques in several important respects.

First of all, we must distinguish the two
basic principles by which the code-size re-
duction is achieved: code compression and
code compaction (see the corresponding
sections above).

Next, all types of program code have
some special features that are not com-
mon to other types of input data or to
general data. These features arise from
the nature of program code like a hierar-
chical structure or repeating fragments.
If the compression algorithm is aware of
these things it can produce much better
results. Furthermore, it is not uncommon
that some types of program code, such as
machine code, contain many redundan-
cies. Of course, the compaction methods
can also take advantage of various seman-
tic characteristics of the input code.

A serious constraint with code compres-
sion methods is the fact that some data
compression techniques (referred to as
“lossy” as opposed to “lossless”) trade-off
accuracy with compression ratios so the
output after decompression is not identi-
cal to the original input. Evidently, code
compression does not permit such trade-
offs.

A further drawback of applying special
code-size reduction methods can be that,
in many cases, a certain method is appli-
cable only to a fixed class of code types.

Probably the most important differ-
ences between general and code compres-
sion methods, however, come from the
fact that program code (especially ma-
chine code) is always stored, manipu-
lated and executed on hardware devices.
Hence, many techniques are implemented
by hardware means. Most commonly, how-
ever, the software- and hardware-based
solutions are intermixed in order to pro-
duce optimal results. Hence, keeping this
in mind, there are some important aspects
of which one must always be aware when
implementing or investigating a code-size
reduction method. These are:

—The amount of RAM needed for de-
compression is extremely important be-
cause it is usually restricted. There is

no point in applying compression if too
much RAM is then needed at runtime
for decompression.

—Because of jumps and function calls,
random access is required, whereas tra-
ditional data compression techniques
permit only sequential access.

—Though the compression can use as
much number crunching as needed be-
cause it is done “off-line,” decompres-
sion must be very fast.

Although our focus is on code compres-
sion, some basic concepts and algorithms
utilized in data compression as well are
presented next.

2.3. Short Description of Basic Algorithms

In this section, we will give an introduc-
tion to some of the most important algo-
rithms that have always been used for
compression. The purpose of this section
is to include the necessary background
knowledge so that the survey and the ar-
ticles can be understood without needing
a reference textbook. Very good textbooks
already exist on this topic, for example,
Bell et al. [1990], Nelson and Gailly [1995],
and Hankerson et al. [1997].

As we mentioned earlier in Section
2.1.3, most of the compression methods
may be modeled as containing a (some-
what separate) modeler and encoder. In
this section, we cannot overview both the
modeling and coding issues because they
are so diverse and, moreover, for several
(mostly simpler) compression methods
they cannot be really separated from each
other. Whenever a compression scheme is
presented in the literature, the authors
usually compare it with another scheme.
In the following paragraphs, we can only
give a brief overview along with the main
references to some of the most popular
coding schemes. Hence, we will provide
only a description of the most impor-
tant coders/compressors, while modeling
is only briefly mentioned here.

2.3.1. Modeling Techniques. The basic
task of a modeler is to produce such
models that can guide the encoding
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process to assign the most suitable
code-values to the symbols of the input
sequence.

The model in its most simplest inter-
pretation consists of statistical informa-
tion obtained from the input sequence. In
the simplest case, it contains probability
values for the symbols based on their fre-
quency of appearance. If these values are
commonly used for the whole sequence,
then we refer to it as a static model. On
the other hand, if this model is constantly
updated based on the portion of the in-
put seen so far, it is known as an adaptive
model.

It is also common to classify modelers
in accordance with the number of symbols
that are taken into account for computing
the probability values. Based on this, we
can talk about order-0, order-1, . . . , order-
n models.

There are, of course, also very so-
phisticated modelers that compute the
probabilistic distributions in more com-
plex ways. For example, using different
machine-learning methods to predict the
input symbols and based on it the prob-
ability distributions. An example for the
modelers is the Markov modeler.

Note that the best models could be pro-
duced based on the whole sequence and
computing, for example, the minimal en-
tropies. However, solutions of this kind are
computationally very demanding.

2.3.2. Huffman Coding. Huffman coding
is one of the oldest and most important
coding techniques, due to its simplicity
and effectiveness. Huffman published his
algorithm as early as 1952. Since then,
many variants have been proposed for a
wide range or purposes. A good description
with examples can be found in Nelson and
Gailly [1995].

The idea behind this method is to use
the shortest sequence of bits for sym-
bols that occur most frequently, and the
longest sequence for those symbols that
appear the least. The first problem then
is to find the frequency in which each
symbol appears. Next, a method for as-
signing codes to symbols must be de-

vised. Finally, a suitable data structure
must be found that is economical and
efficient.

Huffman coders can be quite fast, but
perform badly when probabilities differ
significantly from a power of 1/2, and de-
coders can be implemented in more than
a dozen different ways, each with its own
speed vs. size trade-off. Hence, Huffman
coding usually refers to a family of coding
schemes.

Some care is needed before using
Huffman coding for code compression be-
cause the basic algorithm does not allow
for random access. Consider a jump in-
struction. Once one determines which bit
to start executing next, the next problem
is to properly initialize the decoder. Nor-
mally, one would need to start decoding
from the beginning of the data until one
reaches the given bit. Therefore, Huffman
coding is easier to use when entire func-
tions are decompressed at a time, but it
can be used effectively with blocks of code
as well.

2.3.3. Arithmetic Coding. The principles
of Arithmetic coding are given in this sur-
vey because this coding is used in several
papers we study in the following: More-
over, it performs better than Huffman cod-
ing in some circumstances. Many descrip-
tions of arithmetic coding can be found
(e.g., Bell et al. [1990]) as well as different
variations and implementations [Witten
et al. 1987; Howard and Vitter 1992]. In
addition, Nelson’s book [Nelson and Gailly
1995] has a very good description of this
method as well.

The arithmetic coding algorithm uses
probabilities directly instead of frequen-
cies because they are real numbers. The
probabilities are used to split an interval,
usually [0, 1], into ranges in proportional
sizes, each symbol being assigned to one
and only one range. The encoding itself en-
tails keeping track of an interval.

The arithmetic needed for the imple-
mentation is very simple since it only
requires trivial linear transformations
such as mapping a number from one in-
terval to another one. Thus, making it
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suitable for applications where the dif-
ficulty of implementation is very impor-
tant such as hardware-based implemen-
tation. Although the method is based on
real numbers, most of the practical im-
plementations can be be optimized us-
ing integers only with implied decimal
points.

A drawback with the original version of
the algorithm is that the entire message
must be read before it can be encoded or
decoded. An excellent reference that ex-
amines arithmetic coding and includes C
code of different versions can be found in
Witten et al. [1987].

2.3.4. Dictionary-Based Methods.
Dictionary-based coding schemes cover
a wide range of various coders and com-
pressors. Their common feature is that
the methods use some kind of a dictionary
that contains parts of the input sequence
which frequently appear. The encoded
sequence in turn contains references
to the dictionary elements rather than
containing these over and over. There
are many different variations of this
approach, so it would be impossible to
mention all of these here.

One example of a simple and effec-
tive dictionary method is the Move-to-
front (MTF) coding [Bentley et al. 1986].
It maintains a list whose elements are
ordered so that the first element is the
most recently accessed element. This has
in turn the effect that a sequence with high
spatial locality tends to yield a sequence
of small indices, which should compress
well [Ernst et al. 1997]. On the other hand,
MTF coders are reasonable solutions for
dynamic data which cannot be analyzed
off-line, or (parts of) data too complex to
model. In other cases it may render a sig-
nificant coding loss, that is they perform
poorly.

Another example of dictionary meth-
ods is the Lempel—Ziv family of compres-
sion algorithms [Lempel and Ziv 1976; Ziv
and Lempel 1977]. This baseline method
evolved into numerous variations and dif-
ferent implementations, all of which can-
not be mentioned here.

3. ASSESSMENT CRITERIA

The usual task of a survey article is to give
an overview of the different methods avail-
able for a certain class of problems along
with a possible classification and practical
performance- and other measurements. In
the case of code compression methods, the
“usual” classification is as of a hardware-
or software-based solution. In addition,
the typical (and surely most important) as-
pect of a method’s performance is its com-
pression capability, that is, the compres-
sion ratio.

However, the properties of code com-
pression methods are more complex, so we
propose another assessment, as described
in this section.

The methods that characterize them-
selves as “code compression methods” uti-
lize different principles for achieving this
goal. Of course, their motivations and
goals may also differ, so the applicabil-
ity of the methods is diverse as well. As
a result of this, their effects on the effi-
ciency of compression (expressed as the
ratio) and other aspects such as compres-
sion/decompression time—that are, by the
way, neglected by many methods—are dif-
ferent. In many cases, this difference can-
not be accurately measured and compared
to each other.

Based on the above, we chose to make
two clear separated assessments:

(1) The first assessment is to classify the
methods into one of the most com-
monly appearing groups according to
certain aspects.

(2) Afterwards, the second assessment
contains the actual evaluation of how
the methods perform by measuring
their effects on various things.

For the sake of simplicity and uniform
treatment of the subject, we will intro-
duce short, three-letter notations for each
(classification and effect) aspect. If these
aspects have predefined values they are
represented by numbering the notation
letters.

In the following, the two assessments
are presented in detail.
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3.1. FIRST ASSESSMENT: Classification
of the Methods

As noted earlier, classification is difficult
because there may be many aspects suit-
able for the grouping. We found that the
traditional classification as hardware- or
software-based method (primarily regard-
ing the implementation of the decompres-
sor) is inadequate and in many cases the
selection is not even possible unambigu-
ously. However, this type of grouping is
still presented in our third classification—
CDE, see below. We define these six group-
ing methods—which are basically orthog-
onal dimensions—according to which the
method can be unambiguously3 put in the
space of various method types:

(1) grouping by the basic size-reduction
principle (CPR)

(2) assessment to the type of the applica-
ble hardware (CHW)

(3) grouping by the implementation of the
decompressor (CDE)

(4) grouping by the code equivalence
(CCE)

(5) grouping by the type of the subject pro-
gram code (CCT)

(6) grouping by the granularity of the sub-
ject program code (CGR)

In the following, these are described in
detail.

3.1.1. CPR Classification (by Size-Reduction
Principle). This dimension of the classifi-
cation is taken as the primary aspect in
our survey; the assessment of the meth-
ods in Section 4 is also ordered along this
dimension. The purpose here is to classify
the subject method according to the basic
principle that is used to achieve the code-
size reduction. We identified the following
principles as the most typical:

CPR-1: without a decompressor (com-
pactor)

CPR-2: decompressor is required

3The second classification—CHW—does not uni-
quely assign a method to a particular hardware type
but, rather, states whether it is suitable for each of
the types or not.

CPR-3: interpreter is required (or a mix of
the previous two)

Methods of the first type (CPR-1) do not
need a decompressor at all, the result of
the size-reduction being a compacted ver-
sion of the input that is of the same form
(see Section 2.1.5 for details). CPR-2, the
second type, is the most common and it de-
scribes methods which require some kind
of a decompressor to get the original input
(either software- or hardware-based and
either trivial as a table or complicated as
a decision tree). The third type is reserved
for the methods that cannot (or only with
difficulty) fit into one of the other two. It
is typical of those methods that do not re-
quire a decompressor but some kind of an
interpreter to get the original code (the
code is not really compacted but is trans-
mitted in another form that can be directly
interpreted by the receiver).

3.1.2. CHW Classification (Applicable Hard-
ware Type). This classification somewhat
differs from the others in that it does
not really groups a method into a cer-
tain class. Instead, all of the possible val-
ues of this classification are considered as
showing whether the method is suitable
for a specific class or not. We will also
give our classification according to this
with the method descriptions. The follow-
ing basic hardware types are used in our
assessment:

CHW-0: classification is not applicable
CHW-1: System-On-a-Chip/embedded

systems
CHW-2: mainframe computers

Methods for which the application do-
main is not relevant/applicable (e.g., not a
complete method) will get the code CHW-
0 assigned to them. The other two hard-
ware types are self-explanatory. If both
are suitable, the method is probably not
hardware-specific, that is, it can be applied
on any hardware type.

3.1.3. CDE Classification (Implementation of
the Decompressor). With this classifica-
tion, the methods are grouped according
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to the method of its implementation; as in
software, hardware or both. The classifica-
tion regards particularily the decompres-
sor, since the compression phase is in most
cases purely software-based and typically
it is not a relevant factor for evaluating
the code compression method. Of course,
for methods where there is no need for a
decompressor (CPR-1), this classification
is irrelevant (gets a value CDE-0).

The implementation of the decompres-
sor (if there is any) can be classified ac-
cording to the hardware environment in
which it can be applied. In some cases
the methods do not explicitly define the
hardware on which they operate or the
method can be designed to be purely soft-
ware based (CDE-0). It is, however, im-
portant when the method exploits some
kind of hardware configuration (such as
the CPU-cache configuration) or when it
proposes a new hardware logic configura-
tion that is combined with the compres-
sion and/or decompression process.

In our survey, we defined the entries for
this classification based on the typically
appearing configurations in the methods.
Note that this was not so straightforward
as many methods do not report clearly
which hardware they operate on. On the
other hand, some methods explicitly de-
fine a new approach for the hardware mod-
ification of the system for the decompres-
sion phase. We outlined the following most
typical hardware architectures for imple-
menting the decompression:

CDE-0: software-based or don’t care
CDE-1: don’t care, but extra memory

(RAM) is needed
CDE-2: hardware decoding by the modifi-

cation of the CPU
CDE-3: hardware decoding on architec-

tures without cache (CPU is left
intact)

CDE-4: hardware decoding on a pre-cache
architecture (CPU is left intact)

CDE-5: hardware decoding on a post-
cache architecture (CPU is left
intact)

The methods that are classified as type
CDE-0 are purely software-based, can be

implemented using any hardware config-
uration, or they do not need decompres-
sion at all (they are of type CPR-1). Meth-
ods of type CDE-1 are basically purely
software-based as well, which means that
no hardware-related modification is re-
quired. The only difference is that ex-
tra (RAM) memory is needed in order
to decompress the program in the CPU
(hence, some applications—such as em-
bedded systems—could not utilize these
methods). CDE-2 classifies those meth-
ods where the decompression is done by a
hardware modification to some part of the
processor (i.e., its address generation logic
or instruction set). Methods of the next
architecture, CDE-3, require some kind
of decompressor hardware module, which
is placed, for example, between the CPU
(which is not modified itself) and the mem-
ory, and there is no instruction cache in-
volved, while methods of type CDE-4 and
CDE-5 use a decoder between the mem-
ory and cache or between the cache and
the CPU, respectively.

3.1.4. CCE Classification (by Code Equiva-
lence). This classification is related to
CPR, moreover it could be seen as
part of that classification. However, it is
quite crucial for certain type of appli-
cations and hence the new classification
category.

The code equivalence classification
groups the methods based on to what ex-
tent they preserve the layout and function-
ality of the original program code in the de-
compressed code. This attribute is, in most
cases, directly dependent on the code-size
reduction principle: compactors produce
equivalent but different code in their lay-
out, while most of the decompressors pro-
duce completely equivalent code. However,
in many practical applications this kind of
strict distinction cannot be made because,
for instance, the decompressor must make
use of additional computations due to the
modification of the cache architecture. We
classify the code equivalence in the follow-
ing way:

CCE-0: the decompressed code is com-
pletely equivalent
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CCE-1: the decompressed code is equiva-
lent as seen by the CPU

CCE-2: the (decompressed) code is func-
tionally equivalent

The first type (CCE-0) is typical of meth-
ods which use some kind of code compres-
sion to produce the compressed data and
the decompression is performed before the
execution of the program. This way,
the original input program is gained. The
methods of the second type, CCE-1, also
produce equivalent code but that is seen
equivalent only by the CPU. The code it-
self (as a memory image) is not completely
identical to the input code because it may
include some additional information that
aids the code execution mechanism (e.g.,
cache refill engine). These modifications
may involve some helper instructions com-
puted on-the-fly or some address reloca-
tion information. Finally, those methods
for which the decompressed4 code is equiv-
alent only in its functionality to the origi-
nal code (the instructions and/or their lay-
out is modified) we will refer to as type
CCE-2. This type may also involve meth-
ods where there is really no “input stream”
for compression, but the compressed rep-
resentation is prepared from another rep-
resentation (e.g., source code).

3.1.5. CCT Classification (Code Type). This
classification addresses the type of input
code on which the method operates. (It
is more appropriate to define this as the
type of the final decompressed code, since
there are some methods where the input
for compression is in another form.) Most
methods are designed based on specific
requirements regarding its input data,
which can be classified in a simple way.
However, with some methods the type of
the input code is not relevant (especially if
the modeling is the primary result of the
method).

There are some methods that are not
primarily designed for compressing pro-
gram code but some other type of data like

4Or the compacted code, since there is no decompres-
sion, therefore the compacted code itself is the “de-
compressed” code as well (see 2.1.5).

text. However, there are no obstacles to ap-
ply this kind of method to code compres-
sion as well. This is especially true when,
with relatively simple modifications, it can
be adapted to code compression.

Our code type classification applies the
following codes:

CCT-0: non-code data (e.g., text)
CCT-1: source code
CCT-2: IR (intermediate representation)
CCT-3: assembly
CCT-4: machine
CCT-5: special type

The meaning of the codes is self-
explanatory. However, when some more
precise information concerning the code
type is available (e.g., source code lan-
guage) then it is presented with the
method description. The last type de-
scribes those code types that are more
specific, such as machine code for a specific
family of processors or instruction sets.

3.1.6. CGR Classification (Granularity of the
Code). This classification notes the gran-
ularity of the input code when compres-
sion (decompression) is applied. It is used
to classify the size of the program code
units that are compressed (decompressed)
as a whole. Some methods do not explicitly
define this property, but it is clear in most
cases.

The following granularity values are
used:

CGR-0: irrelevant
CGR-1: bit sequence
CGR-2: character
CGR-3: instruction
CGR-4: block (basic-block and/or cache-

line)
CGR-4.1 small (e.g., cache-line)
CGR-4.2 large (e.g., page)

CGR-5: procedure
CGR-6: translation unit
CGR-7: program

Those methods for which the granular-
ity is irrelevant (e.g., can be applied to
any level of the granularity, or no unit is
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used for the size reduction) are of type
CGR-0. The second type addresses the
smallest unit for compression, a bit se-
quence (which is usually smaller but it can
also be bigger than a byte). The next one
models a character (a byte) from the in-
put code while methods which compress
one instruction at a time get the clas-
sification CGR-3. The next type, CGR-4,
corresponds to those compressors which
use blocks of code as its compression
units (e.g., basic-blocks or cache-blocks).
Where relevant, more precise informa-
tion is given about the actual size of the
blocks (concrete values, if possible): CGR-
4.1 stands for small blocks such as ba-
sic blocks or cache-blocks, while CGR-4.2
stands for larger blocks such as memory
pages. With CGR-5, the compressor com-
presses one procedure at a time, which is
then also served as the unit for decompres-
sion. Finally, the last two types represent
the largest compression units: translation
units (in the case of some code types, this
could mean, e.g., classes) and the whole
program, respectively.

3.2. SECOND ASSESSMENT: Effects of
the Methods

In the previous section, we described our
approach for the classification of the meth-
ods. Besides the assessment for classify-
ing the methods in a structured way as
seen before, one of the most important
tasks of this survey is the investigation of
the actual effects of the code-size reduction
methods.

The first and probably most important
question is how the method affects the
size of the resulted compressed data, that
is, the compression ratios it can achieve.
However, there are a number of other as-
pects that need to be investigated and
which can be vital in some applications.
For example, the decompression complex-
ity is relevant where the decompression
needs to be implemented in hardware.

For the assessment and evaluation in
Sections 4 and 5, we will make use of spe-
cific notations for the values of the effects.
These are described at the beginning of
Section 4.

We investigated the effects of the meth-
ods on the following:

(1) ECS: size of the (compressed) code
(2) EEX: number of executed instructions
(3) EES: execution speed
(4) ECT: compression time/complexity
(5) EDT: decompression time/complexity
(6) EBE: behavior safety
(7) EEN: energy consumption
(8) the mutual effect of the above

In the following these are described in
more detail.

3.2.1. ECS Effect (Code Size). The effect
of a code-size reduction method on the
size of the resulting code is basically a
measure of its size-reduction capability,
which is the principal merit of a com-
pression/compaction method. It can be ex-
pressed as the compression ratio like that
described in Section 2.1.4.

Although the compression ratio is the
most important measure of the goodness
of a code-size reduction method, it is not
unusual that this feature is treated with
insufficient importance by the authors of
a publication describing the method. This
means that the precise definition is not
given how to interpret the exact values
given for the experimental results. It also
makes it difficult to compare the effective-
ness of different methods with each other
in an objective way.

The following problems can arise when
investigating the compression ratios:

—What unit is used? Relative value in the
range [0, 1] or expressed as percentage
or as bits-per-character, etc. (Note that
these are easily convertible and a uni-
form representation can be given.)

—Does the size of the compressed code
incorporates somehow the information
needed for decompressing? This is im-
portant because the method can “cheat”
when giving a surprisingly good com-
pression ratio, but with enormous
overheads regarding the size and/or
complexity of the decompression engine
(the “lost” information is incorporated
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into the decompression model). In many
cases, this can result in a misleading as-
sessment of the method. Hence, it would
be good to know whether the compres-
sion ratio incorporates (1) the size of the
modeler (see Section 2.1.3) and (2) the
size or complexity of the decompression
engine. This information cannot always
be accessed.

—What was the test-case for the given val-
ues? Is it an average, best case or worst
case value? For certain kinds of applica-
tions one of these is preferable, however,
the comparison of different methods the
average value is the best (given that it
is computed based on sufficient number
of test cases).

—Does the effect on the resulting code-size
depend on the environment where the
method is applied? Or does it involve
other aspects like parameterization ca-
pability of the method, type (or a cer-
tain class) of input data, dependence on
other effects or other external features
such as hardware architecture, imple-
mentation issues?

Based on the above, we can safely say
that our survey may not fully reflect the
capabilities of the methods in a real en-
vironment. However we made certain as-
sumptions when investigating the given
ratios and, where possible, we tried to as-
sess the methods only where it was “fair
to do so.” In addition, we attempted to ex-
press the given numeric data in a normal-
ized value representation.

Throughout the article, we will use the
relative value notation and assume that
the compression ratio does not include the
model and decompressor and the given ra-
tios are for an average case. Of course,
these assumptions will make the overall
assessment imprecise, but we will show
how, with the corresponding methods, the
given ratios have been calculated.

3.2.2. EEX Effect (Executed Instruction
Number). As seen earlier, some code-size
reduction methods can produce modified
program code via decompression. This
is especially true for code compaction
methods where the compacted code itself

does not actually need to be decompressed
but is essentially modified in order to be
smaller (see classification CCE).

Although the modified code is function-
ally equivalent to the original input pro-
gram, the actually executed instructions
will be different from those in the original
code. For some applications it is important
to know whether the number of these in-
structions is greater than with the origi-
nal program. Hence, the EEX effect shows
the runtime performance of the method. Of
course, the performance is not always af-
fected just by the number of the executed
steps but may be affected by other even-
tual activities involved in decompression
(see EES).

3.2.3. EES Effect (Execution Speed). This
effect is partly related to the previous
one because it mostly depends on the in-
structions executed at runtime. However,
a method’s effect on the execution speed is
not always due to the modification of the
code, but to some additional computations
beside the decompression itself which are
required by certain methods. This would
include some additional activities (possi-
bly additional hardware cycles) required
to perform the decompression.

3.2.4. ECT Effect (Compression Time/
Complexity). Different compression and
compaction methods require different
computations for creating the reduced-
sized code. It is not unusual that in
order to gain a high compression ratio,
the required computations must be very
complex (in many cases more complex
than for the decompression). Sometimes
complexity is an important issue. More-
over, this also involves the time required
for executing the compression algorithm.

3.2.5. EDT Effect (Decompression Time/
Complexity). As for the effect of compres-
sion complexity, the complexity of the
decompression may also be an important
factor. In many methods it is even more
relevant because the decompression needs
to be performed on-the-fly or prior to the
execution of the program. Moreover, the
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compression is usually performed only
once but the decompression process is ex-
ecuted many times. Hence, the decom-
pression algorithm is designed to be more
effective.

Another important issue regarding the
complexity of the decompression algo-
rithm is that in some hardware-related
methods it is implemented by hardware
means. In such cases, the complexity in
terms of the required computations should
be minimized.

3.2.6. EBE Effect (Behavior Safety). As de-
scribed for the EEX effect above, some
methods produce modified code as the re-
sult of the decompression (or compaction).
Apart from the runtime efficiency of such
a modified code, perhaps it is more im-
portant that the code should preserve an
equivalent behavior.

This issue is very important for some
kinds of codes such as embedded sys-
tems machine code owing to timing and
runtime issues. This behavioral safety
can be further divided into (1) exter-
nal behavior (functional equivalence) and
(2) internal behavior (e.g., whether the
resource requirements increase or not).
Thus, in applications where the modified
code is safety-critical, this effect is very
important.

3.2.7. EEN Effect (Energy). The effect of
a method on the energy consumption of
the platform executing the reduced-sized
code is not a primary aspect in the ma-
jority of methods (it may even be irrele-
vant or unmeasurable5), despite the fact
that in some applications it is a very rel-
evant issue. However, there are a num-
ber of methods which were designed with
energy-saving aspects in mind. This sur-
vey pays special attention to these meth-
ods regarding the energy issues.

5It is said that the energy saving is a “system-wide
exercise,” meaning that investigating only the size-
reduction capabilities of a method probably does
not give an overall picture of energy issues of a
hardware/software system. However, producing such
reduced-sized codes using a method that can influ-
ence the energy saving is of crucial importance in
some cases.

There are a number of issues which
may influence the energy-aspects of a
method such as the number of executed
instructions, the type of the executed in-
structions (e.g., which memory types are
accessed) or the specifics of the hard-
ware used (cache organization, etc.). How-
ever, energy mostly depends on the hard-
ware architecture used for decompression
and/or interpretation of the compressed
code, which means that the compression
ratio may not always be the key factor in
energy issues. Generally, the effect on en-
ergy depends on many things and, more
importantly, it comes in conjunction with
other effects, as described in the next
section.

The energy issues are discussed in more
detail in Section 5.4.

3.2.8. Mutual Effects. In some circum-
stances, it is beneficial to separately in-
vestigate one or more of the previously
described effects of a code-size reduc-
tion method. Still, the different methods
are in many ways related to each other
and, moreover, it is not uncommon that a
specific effect is directly dependent on
another.

The most important fact is, however,
that some of the effects mutually influ-
ence each other in terms of trade-offs or
followings between them. The first type
of influence means that if a method can
be adjusted to be more effective by a cer-
tain aspect, other effects may be degraded.
For example, it is very common that those
methods, which can produce high com-
pression ratios usually require complex
computations during compression (e.g., for
creating the best model). A similar is-
sue is trying to strike a balance between
the compression ratio and decompression
time/complexity, that is, if significant re-
ductions can be achieved by simplify-
ing the compression/decompression al-
gorithm and inevitably losing some of
the compressability it is an affordable
trade-off. Another example is that some
of the compaction methods can produce
smaller code by code factoring methods
(see the appropriate sections) but the
price is that the number of executed
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instructions increase due to the code
factoring.

On the other hand, the benefits of some
effects are positively dependent on each
other, that is, their values change in par-
allel. For example, the energy consump-
tion is usually proportional to the number
of executed instructions (although it may
depend on other factors as well). Another
example could be that higher complexity of
the decompression may involve increased
execution times due to additional hard-
ware cycles, say.

Based on the above, we may conclude
that the effects of the methods should be
investigated jointly in order to discover
their mutual correlations. In our survey
we will try to emphasize the most impor-
tant mutual effects of the methods with
their evaluation.

4. ASSESSMENT OF THE METHODS

In this section, we briefly describe the
methods investigated. In the case when
a method is described in more than one
publication, we chose to elaborate these
publications jointly, when it is possible.
Sometimes a publication also contains de-
scriptions of more than one method; in
such cases, we separated them as differ-
ent methods. At some places other related
methods are briefly described as well; un-
fortunately not all of the available meth-
ods could get a dedicated section in this
survey.

After the short description, we briefly
assess the methods by giving a distinct
classification according to our first assess-
ment as described in Section 3.1 and by
giving some preliminary results of the ef-
fects as described in our second assess-
ment in Section 3.2. A more detailed as-
sessment of the effects and comparisons
with other methods (where appropriate)
are given in Section 5.

The methods investigated are organized
around the classification CPR (which de-
scribes the basic compression principle,
see Section 3.1). Within this classification,
for those methods that require a decom-
pressor (type CPR-2) they are ordered ac-
cording to the relative complexity of the

decompression (if this can be determined):
beginning with trivial hardware imple-
mentation to more complicated hardware
logic and the finishing with primarily soft-
ware based methods.

The meaning of the special notations in
the Effects tables is the following. A dash
(—) means that the specific effect is not ap-
plicable to the corresponding method and
the question mark (?) indicates that the
effect is unknown. ++ means “increase”,
while −− means “decrease” (in the case
of EES “speedup” and “slowdown,” respec-
tively). The empty-set sign (∅) denotes that
the method has no effect on the corre-
sponding quantity. We use a three-level
evaluation of the ECT and EDT (compres-
sion/decompression time and complexity)
effects, using L as “low level,” M as “mid-
dle level” and H as “high level” (note that
these are rather subjective values). For
EBE (behavior safety), a three-fold clas-
sification is used as well (∅ means that
there is no safety risk, M means that in
some circumstances the risk may be sig-
nificant, while H means that the behavior
is only functionally equivalent).

∑
corre-

sponds to the discussion about the mutual
effects.

4.1. Cooper and McIntosh’s code
compaction methods

Authors K. D. Cooper and N. McIntosh
Affiliations Rice University, Hewlett-Packard

Corporation
Year 1999

References [Cooper and McIntosh 1999]

Cooper and McIntosh [1999] presented
a code compaction method (referred to as
a compression method) involving several
techniques. Their compaction framework
is integrated into an optimizing compiler,
hence the presented techniques are elab-
orated for RISC-like IR code, but it could
probably be applied to RISC machine code
as well.

The principles of Cooper and McIntosh’s
method are built on the results of C. W.
Fraser from 1984 [Fraser et al. 1984]. The
basic approach is to find repeating frag-
ments in the input code that are then re-
placed by control transfer instructions to a
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reference instance of the fragment. (K −1
of the total K identical instances of the
same fragment are replaced with refer-
ences to the last remaining fragment.)

The code-size reduction is achieved by
producing directly executable code using
various types of transformations on IR
code (aka. code compaction). They report
size savings of up to 15% with an aver-
age of 5% on already optimized code by
classical compiler optimizations. (Fraser
achieved 7% on VAX assembly code.)

The basic techniques of the subject al-
gorithm consist of code transformation
methods commonly known as code factor-
ing (see 2.1.5). More precisely, they apply
procedural abstraction and cross-jumping
(tail factoring) on repeating fragments of
the code (repeats). (The repeats are iden-
tified by building the so-called suffix-trees.
See Fraser et al. [1984].) Procedural ab-
straction introduces a new procedure for
the repeating fragment and other frag-
ments call this new procedure instead
of their “inline” execution. Cross-jumping
(also known as tail-merging) can be ap-
plied to fragments with identical regions
that end with a jump to the same target.
These are merged together by replacing
the region with a direct jump to another
identical region.

Selecting the repeating fragments is
based on calculating the expected saving
or, alternatively, by applying profiling in-
formation as well (in which case the heav-
ily executed portions are avoided in order
to decrease the execution time overhead).

In order to be able to identify not only
(lexically) equivalent fragments but also
similar ones (which may differ in, e.g.,
just register names and operand literals),
Cooper and McIntosh described several
enhancements to the basic techniques by
which the code fragments are transformed
prior to the repetition identification. These
include:

—abstracting branches by rewriting the
labels to PC-relative form

—abstracting registers by first renaming
them to relative references of a block
and then applying the live-range recol-
oring of registers,

—constant abstraction,

—instruction ordering,

—etc.

Another proposal for the improvement
of the algorithm is to use profiling infor-
mation in terms of dynamic instruction
counts for each function in order to choose
those functions, for which it is economical
to compact.

Note the resemblance of this method
with the method by Liao et al. [1995,
1999], who also abstracted frequently ex-
ecuted instructions using minisubroutine
calls.6

Brief classification
No need for decompression

CPR CPR-1 (compactor).
CHW CHW-1,2 Any hardware.
CDE CDE-0 Compactor.
CCE CCE-2 Functional equivalence.
CCT CCT-4 Computations on IR code

(CCT-2).
CGR CGR-7 The whole program at once.

Effects
ECS 0.95 Average value. The maximum was

0.85.
EEX ++ Code factoring involves additional

instructions.
EES −− Code factoring involves additional

instructions.
ECT M Relatively complex compiler

techniques are used.
EDT — No need for decompression.
EBE H Only the external behavior is

equivalent.
EEN ? Probably increased due to

increased EEX.
The decrease in ECS results in∑

the degradation of EEX and
EES.

6Liao et al [1995, 1999] developed a dictionary-based
method for reducing the code size for DSP proces-
sors. The common instruction sequences that exceed
some minimal length are put into a dictionary and
each of the original occurrences is replaced with a
mini-subroutine call to the (abstracted) procedure.
The (compressed) code is therefore a skeleton of these
procedure calls and other infrequent code sequences.
The original algorithm can be applied without hard-
ware modification but, using a minor modification in
the processor hardware, greater compression ratios
can be achieved.
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4.2. Squeeze

Authors R. Muth, S. K. Debray et al.
Affiliations University of Arizona, Compaq

Computer Corp.
Year 1998–2000

References [Muth et al. 1998] [Muth 1999]
[Debray et al. 2000]

The code compaction method outlined
in this section has been implemented in a
tool called Squeeze. Squeeze is part of alto
[Muth et al. 1998], a post-link-time code
optimizer developed at the University of
Arizona.

The results of the whole project are com-
prehensively described in the PhD thesis
of Robert Muth [Muth 1999]. The Squeeze
tool itself is a binary-rewriting tool, which
produces compacted directly executable
code from a linked executable (DEC Alpha
platform), already optimized by the com-
piler. The most comprehensive description
of the Squeeze approach can be found in
Debray et al. [2000].

The authors report savings as much
as 30%, so this method can be regarded
as practically the state-of-the-art in code
compaction. Moreover, instead of running
slower, the resulting code runs faster than
the code produced by general code com-
paction techniques (e.g., Method 4.1). This
is mostly due to the removal of code con-
taining useless computations.

The main idea behind it is based
on the work by Cooper and McIntosh
(Method 4.1), but with several improve-
ments. The most important one is prob-
ably that Squeeze operates on the linked
code, which enables many opportunities
for optimization, which the compiler could
not exploit, as it generally works only at
the level of compilation units and not at
the level of the whole linked program.

Another important thing is that the
Squeeze approach basically combines the
classical compiler optimization concepts
with general code compaction methods
(such as enhanced code factoring, includ-
ing procedural abstractions and others).
One of the reasons why high compression
ratios can be achieved with this approach
is that the techniques used have been com-
bined in a clever way by taking advantage
of the merits of each.

The basis for all of the techniques is a
good control flow graph (CFG), which must
be computed from the linked executable
code. The building of a precise CFG in-
volves several complex techniques such
as interprocedural constant propagation
and register liveness analysis [Aho et al.
1985]. The performance of the optimiza-
tion greatly depends on the precision of
this graph.

Classical compiler optimizations. The clas-
sical optimizations for reducing the code
size include redundant-code elimination,
unreachable-code elimination, dead-code
elimination and strength reduction. Most
of these algorithms are based (although
adapted to machine code) on the founda-
tions of compiler design of the classical
compiler book [Aho et al. 1985].

Code factoring. The code factoring is per-
formed over the classical optimizations in
terms of different kinds of code transfor-
mations in order to produce functionally
equivalent, but smaller code. Code factor-
ing implemented in Squeeze includes lo-
cal factoring, procedural abstractions and
various architecture-specific techniques.

Brief classification
No need for decompression

CPR CPR-1 (compactor).
CHW CHW-1,2 Any hardware.
CDE CDE-0 Adaptation of some

architecture-specific
techniques.

CCE CCE-2 Functional equivalence.
CCT CCT-4 Machine (for DEC Alpha, but

can be adapted).
CGR CGR-7 The whole program at once.

Effects
ECS 0.7 Best result.
EEX −− /++ An overall reduction is

reported for most of the
tests, however, the code
factoring alone can
increase the EEX.

EES ++ /−− The same applies as for the
EEX, even speedup is
possible.

ECT H Compression involves complex
compiler-techniques.

EDT — No need for decompression.
EBE H External behavior is

equivalent, but there could be
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problems with for example, timing
and real-time issues.

EEN ? May be decreased due to the reduced
EEX.

Smaller code and fewer executed
instructions can positively
influence the energy need. EBE∑
may be problematic because the
compacted code has been greatly
altered.

4.3. Narrow-Word Instructions for Energy
Reduction from Italy

Authors L. Benini, A. Macii, E. Macii, and
M. Poncino

Affiliations Università di Bologna, Politecnico
di Torino, Italy

Year 1999
References [Benini et al. 1999]

In their paper Benini et al. [1999] de-
scribe a method for compressing code in
order to decrease the energy requirements
of code memory accesses (firmware code)
in embedded systems. This is achieved by
reducing the energy consumption origi-
nating from accessing the (external) code
memory chip (ROM). The reduction is car-
ried out by reducing the width of the in-
struction bus to a narrow word width,
through which the most commonly exe-
cuted instructions will be transferred in
a compressed form.

They propose modifications to the archi-
tecture of CPU-to-memory accesses in or-
der to achieve this compression. However,
the technique is transparent to the proces-
sor core, so no modifications are needed to
the CPU itself. (Note that this can be con-
trasted to some usual solutions by RISC
MCU and CPU manufacturers to reduce
energy costs in terms of instruction mem-
ory bandwidth minimization, e.g., ARM
Thumb and MIPS16, where the instruc-
tions themselves are shortened.)

The transparency of the CPU is
achieved by placing a specific hardware
module between the program memory
and the CPU (placed into an ASIC
with the CPU), which uses the same
communication protocol. This module is
responsible for decoding the compressed
instructions and to produce the original
instructions for the CPU. This decoding is

done on-the-fly during instruction fetch of
the processor.

The idea is based on a previous paper
by Yoshida et al. [1997]. The approach
is the following. The most commonly ex-
ecuted instructions are compressed and
coded with a narrow word (8 bits, in the
implementation of Benini et al. [1999]).
This means that only 255 instructions are
encoded, while the rest is left unchanged
(one specific code is reserved as an escape
code). The codes assigned are minimum
Hamming distance binary codes. The top
instructions are selected based on simple
statistical information, which counts the
relative execution frequencies of each in-
struction. This is done by profiling, that is,
executing the program on relevant inputs
and counting the dynamic information.
The coding uses dlog−2Ne bits, where N
is the number of distinct instructions ap-
pearing in the code. This implies that the
external code-memory bus is reduced to
only 8 bits, by which the energy saving is
achieved.

Based on the above, the storage in the
memory consists of storing the uncom-
pressed instructions—preceded by an es-
cape code (256)—and the compressed in-
structions continuously.

The decompression is done by a hard-
ware module between the processor core
and the external memory that utilizes an
IDT (Instruction Decompression Table),
which stores the actual instructions cor-
responding to the 8-bit codes.

The most significant improvement of
Benini et al. over the previous approach is
that the size of the IDT is fixed and limited
due to the fact that not all instructions are
encoded, but only a limited number (255).
This also implies a fixed compression ra-
tio for the most frequently used instruc-
tions of 8/k, where k is the width of the
uncompressed instructions. However, the
final compression ratio can be measured
by incorporating the ratio of the number
of compressed and uncompressed instruc-
tions. This ratio is not directly provided by
the paper, however, it can be easily derived
from the method itself by the above specu-
lation. Concrete values are not presented,
only the ratio of the actually executed
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most commonly used instructions (static
frequency ratios are not given).

Four different hardware architectural
schemes are proposed of varying complex-
ity for the implementation of the decom-
pressor logic. They differ in the way mem-
ory is organized and accessed. The authors
also present detailed simulation data for
the estimated energy requirements of the
four architectures. They conclude that the
choice among these architectures can be
made based on the available memory orga-
nization, the affordable complexity, which
must be traded off against the achievable
energy reduction.

The proposed approach is good for han-
dling random access control transfers as
well, since the decompression logic incor-
porates an address generation logic.

The final result of their experiments
is that the dynamic memory utilization
(this is most important for energy con-
sumption) and memory switching is cut
by about 50%, which suggests that signifi-
cant memory reductions could be achieved
in real implementations. This must in-
clude, however, the overhead of the decom-
pression logic. However, the simulations
suggest that its overhead is not signifi-
cant with respect to the achievable sav-
ings coming from the method (an estimate
of slightly more than 8-kbit memory space
overhead is presented, which is mainly
due to the size of the IDT). They ar-
gue that program execution time may
also become shorter, although this was
not demonstrated. The authors performed
their experiments on the DLX proces-
sor architecture, but they claim that the
method can be adapted to other proces-
sor architectures as well (primarily RISC).
On the other hand, they present several
assumptions regarding the architecture
which may be an obstacle to the method’s
application.

Brief classification
Decompression by

CPR CPR-2 hardware.
CHW CHW-1,2 Primarily RISC.
CDE CDE-3 Several modifications.
CCE CCE-0 The code is equivalent.
CCT CCT-4 Machine code.
CGR CGR-7 The whole program at once.

Effects
ECS −− Decreased, but concrete

numbers are not given.
EEX −− Decrease is reported.
EES ∅ No effect.
ECT L Simple, but profiling is needed.
EDT ∅ Constant EDT time, but

hardware complexity may
differ.

EBE ∅ No effect.
EEN −50% Based on simulating memory

utilization.
More complex decompression∑

may increase overall energy
need.

4.4. Code Compression for Cache-Based
RISC by Wolfe et al.

Authors A. Wolfe, A. Chanin, M. Kozuch, M.
Beneš and S. M. Nowick

Affiliations Princeton Univ., U. C. Berkeley,
Motorola, S3 Inc. and others

Year 1992–1998
References [Wolfe and Chanin 1992] [Kozuch and

Wolfe 1994] [Beneš et al. 1997, 1998]

Wolfe and Chanin presented their first
paper on code compression in 1992. Since
then, the basic method has been improved
in several other publications, but the idea
remained the same: compressing code off-
line using a good compressor and execut-
ing the code on a cache-based architecture
by decompressing the code into the cache-
line by a hardware module. They propose
this approach for RISC processors.

Wolfe et al. call this method CCRP
(Compressed Code RISC Processor). The
method is transparent to the processor
core, the only required hardware modifi-
cations are concerning the cache refill en-
gine. The basic idea behind the method is
that blocks of the program code (cache-
lines) are encoded off-line using a good
statistical compressor (whose decompres-
sor part is relatively simple) and stored in
the code memory. The instructions are de-
compressed via the (modified) cache refill
engine when an instruction of the corre-
sponding cache-line is referenced and the
fetch is initiated during runtime. Hence,
the decoded instructions are placed into
the instruction cache in their original
form. The decompression is triggered by
a cache-miss, so relatively rarely.
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Since the instruction addresses in the
compressed code are invalid in the code
memory (when cache-miss occurs), an ad-
ditional table, called the Line Address
Table (LAT), is used to map the addresses.
The LAT is created during the compres-
sion phase and is stored along with the
code in the code memory. The translation
using the LAT is necessary only if the cor-
responding instruction is not in the cache.
Searching the LAT is enhanced using a
so-called Cache Line-address Lookaside
Buffer (CLB), which improves the perfor-
mance of the cache refill engine.

In their experiments, Wolfe et al. used
different compression schemes. In the-
ory, any good compressor could be used,
but an important requirement is that
it must be capable of block-based com-
pression, since the cache-lines are com-
pressed and decompressed individually
rather than the whole program in one
decompression phase. The encoders they
investigated include traditional Huffman
and bounded Huffman coders. Moreover,
the scheme employed must offer the pos-
sibility of a reasonable hardware imple-
mentation. The decoding has a certain
overhead in the execution time, but this
greatly depends on the implementation
hardware.

The authors gave an outline of the im-
plementation of the decompressing en-
gine, including the LAT and the CLB. They
also presented some experimental results
concerning the performance of the ap-
proach. They used a simulator to simulate
the behavior of the cache logic. The results
suggest that the runtime- and complexity-
overheads induced by the decompressor
logic is highly traded off by the compres-
sion ratios that can be achieved and the re-
duced memory-to-instruction cache traffic,
which can also strongly affect the overall
energy requirements in a beneficial way.

In the subsequent articles, Wolfe et al.
suggested several improvements to the
basic approach, as well as further ex-
perimental results regarding the size of
the LAT and use of various compression
schemes. In Kozuch and Wolfe [1994], the
authors elaborated on the complexity and
theoretical (zeroth-order, first-order and

aggregate entropies), as well as practical
(Huffman, gzip, variable symbol length)
compression ratios. Their final conclusion
was that an asynchronous Huffman coder
is suitable for most applications [Beneš
et al. 1998].

The group of authors also discussed
concrete hardware implementations for
their compression method, and describe
the Huffman decoder in noticeable detail
[Beneš et al. 1998, 1997].

Notice the resemblance of this method
to the procedure-based compression
method by Kirovski et al. [1997], which is
briefly described in Section 4.7. The real
difference lies in the granularity of the
compression (cache-block vs. procedure).

Brief classification
CPR CPR-2 Decompression by hardware.
CHW CHW-1,2 RISC architectures with

cache.
CDE CDE-4 Using LAT and CLB.
CCE CCE-0 The code is equivalent.
CCT CCT-4 Machine code.
CGR CGR-4.1 The blocks are the cache-

lines. The experiments
were performed with a
cache-line of 32 bytes.

Effects
ECS 0.73 For Huffman, other compression

schemes may differ.
EEX ∅ No noticeable effect observed.
EES −− Only a slight decrease was

reported.
ECT M Depends on the compression

scheme.
EDT M Depends on the compression

scheme, mustn’t be too complex.
EBE M EES could cause problems in time

critical applications.
EEN −− No data given.

More effective compressor schemes
achieve higher ratios, but are∑
more complicated to implement,
so the EES and EEN may be
degraded.

4.5. Improved Compression for
Cache-Based RISC by Motorola

Authors M. Breternitz Jr. and R. Smith
Affiliations Motorola, Inc.

Year 1997
References [Breternitz and Smith 1997]

Breternitz and Smith [1997] investi-
gated the approach by Wolfe (Method 4.4)
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and proposed a method, which eliminates
most of the problems of the former. Using
a clever technique, the necessity for the
LAT and CLB is totally eliminated, and
this way the implementation of the hard-
ware decompressor is significantly simpli-
fied (see 4.4).

The need for the LAT is eliminated by
retaining the mapping between runtime
addresses (as seen by the CPU) and the
addresses in the compressed code. In other
words, when an instruction is decoded
with a certain address reference, the ad-
dress is simply mapped to the correct lo-
cation in the compressed code.

The compression is also done by com-
pressing blocks of code (i.e., cache-lines)
and storing these compressed blocks. The
size of the uncompressed blocks is fixed,
and hence their base address is known.
When the blocks are being compressed,
the beginning address of each compressed
block will, of course, depend on the
compression ratio for each individual
block.

When a compressed block is being de-
compressed and put into the cache (note,
that this approach is the same as in
Wolfe’s method), the instructions refer to
addresses, which have been changed to a
special value in the compression phase.
These address values contain the neces-
sary information about the beginnings of
the compressed blocks that need to be ac-
cessed next and put into the cache. In
other words, the input program is prepro-
cessed and compressed in a single step.

The original addresses are modified in
the compression phase to a base.offset
form, where base is a base address where
the referred compressed block will take
place, and the offset is an offset value
in the newly decoded block. However, to
compute the new base addresses, an esti-
mate of the size of the compressed block
is needed, which in turn depends on the
modified address. So, in this sense, this is
a chicken-and-egg problem, however the
authors proposed an iterative solution, by
which the final compressed blocks can be
created.

Decompression is straightforward (and
simple to implement), since all of the

work regarding the mapping of the un-
compressed and compressed addresses is
done during compression. The decompres-
sor only needs to properly interpret the
special form of the addresses and to con-
trol the cache-refill mechanism.

The only problem with the method is the
problem of fall-through blocks, that is, the
subsequent execution of instructions that
cross block boundaries but which do not
contain direct jumps. The authors present
several solutions to this problem. One is
to insert an additional unconditional jump
instruction at the end of each block, which
transfers to the beginning of the next. This
solution, however, may introduce some se-
rious problems for applications with strict
timing issues and also the code size in-
crease may not be beneficial. Another so-
lution is to generate the jump instruction
on-the-fly by the cache refill unit of the
hardware. The third solution is to detect
the fall-through in the assembly of the pro-
gram or by the compiler and to correct the
labels, so that they do not land on cache
line boundaries. In these solutions, an ad-
ditional work needs to be done by the de-
compressor, namely, to keep track of the
fall-through situations and to make nec-
essary actions.

Notice that the problem of fall-through
blocks may be a serious problem for some
architectures. Another problem is that
the algorithm needs to know all addresses
during the compression. However, there
are several practical situations where
this is not possible: most of the processors
have some instructions that use relative
addressing for control transfers, that is,
the address of the target is computed at
run-time based on some computed values.
This may be a result of the translation
of some high-level source code struc-
tures, such as switch statements that are
translated into jump tables. Although
the authors claim that these are easily
recognizable by the compressor and that
it can be transformed to absolute targets,
in some situations for some architectures,
it is simply not possible to transform
relative targets to absolute values. In
these cases, however, the method may not
be applicable in all situations.
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Although the authors present some ex-
perimental data, the article leaves open
many important questions regarding the
implementation of the method (e.g., the
fall-through problem and relative address
problem). And this may be a serious hin-
drance to its applicability on arbitrary ar-
chitectures.

Breternitz and Smith made their ex-
periments on PowerPC firmware code.
They compared the applications of differ-
ent cache block sizes, and they present a
compression ratio of 0.56 as the best.

Brief classification
CPR CPR-2 Decompression by hardware.
CHW CHW-1,2 RISC architectures with

cache.
CDE CDE-4 Jumps with relative targets

may cause problems.
CCE CCE-1 The addresses are modified.
CCT CCT-4 Machine code.
CGR CGR-4.1 Cache blocks sizes of 8 and

16 instructions were tried.

Effects
ECS 0.56 Best case, insufficient data was

given.
EEX ∅/++ May increase if additional jumps

are added.
EES ∅/−− May slow down if additional

jumps are added.
ECT H Depends on the compression

scheme; additional
preprocessing is needed
(relatively complex).

EDT M Depends on the implementation.
EBE M EES may cause problems in time

critical applications.
EEN ? No data reported, but may

decrease due to ECS.
The modification of the program

because of the fall-through and∑
relative jumps may not be
beneficial for some applications
(see EES, EBE).

4.6. Improved LAT-Based Compression
at Princeton

Authors H. Lekatsas, W. Wolf and J. Henkel
Affiliations Princeton University and NEC USA,

Princeton
Year 1998–2000

References [Lekatsas and Wolf, 1998, 1999a;
1999b]

[Lekatsas et al. 2000a, 2000b, 2000c]

Lekatsas, Wolf and Henkel published a
series of papers which all describe vari-

ations of the same approach, and were
described in Lekatsas and Wolf [1998].
Their subsequent articles improve the ba-
sic method and provide additional results
on other aspects like hardware issues and
energy saving.

4.6.1. The Basic Methods. The approach
of Lekatsas and Wolf [1998] is a signifi-
cant improvement on the method first pro-
posed by Wolfe et al. (see Method 4.4).
They noticed that the applied Huffman
compression of the LAT-based approach
has several shortcomings, for example, all
4 bytes of a 32-bit RISC instruction are
compressed as 8-bit symbols using the
same table. Hence, they proposed that it
would be much better to compress the var-
ious instruction fields separately (such as
operands, immediates, etc.), rather than
treat the program sequence as a single
stream of symbols.

Another improvement was the appli-
cation of arithmetic coding instead of
Huffman because it produces better re-
sults and is easier to implement by hard-
ware means. Otherwise, the approach is
the same, including the decompression
with the LAT and CLB.

As mentioned in Section 4.4, the code
(actually, the cache blocks for it) is stored
in the main memory in a compressed form.
The decompression is triggered by a cache
miss of the CPU. The code is then decom-
pressed (by the hardware cache refill en-
gine) and this decompressed code is stored
in the cache memory for the CPU. The au-
thors cogently remind us that the com-
pression cannot be a traditional file-based
scheme since the individual cache blocks
must be accessed randomly.

Two methods are proposed, one which
is independent of the instruction set and
another which depends on the instruc-
tion set. The first method is called SAMC
(Semiadaptive Markov Compression) and
uses arithmetic coding. The second one
is named SADC (Semiadaptive Dictio-
nary Compression) and is dictionary-
based. Since SAMC is more general and
discussed more in subsequent publica-
tions, we will describe it in greater detail,
while SADC will be described only briefly
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(although it can actually compress more
efficiently).

SAMC. This method uses a semiadap-
tive Markov model (semiadaptive means
that the model is statically built for each
subject program) to drive the arithmetic
coder. The compression is performed as
follows. Instructions are divided into k
streams of bits, each containing ki bits
(note that these bits need not be adja-
cent). Our CGR-1 classification can be
used here to describe the granularity as
bit sequences. The stream division makes
use of statistical profiling information to
get the minimal joint entropy. The opcode
division idea could be further improved
by machine-learning techniques for deter-
mining (and predicting) the best opcode-
division strategies. However, the authors
conclude that the simple division into 4
streams with 8 bits each gives reason-
able results without requiring excessive
storage and complex decoding. A binary
Markov tree is then generated for each
stream with the appropriate probabilities.
This is why the division is required. The
reader may recall that the storage require-
ment of a k-bit long stream is (2k+1−2)/2!
For the compression, a classic arithmetic
coding is used based on the Markov tree
for the streams, which are coded indepen-
dently without taking into account any
correlation between the streams them-
selves. The decompression is performed in
the way described by Wolfe et al., but it
is simplified due to arithmetic coding (for
hardware implementation).

SADC. The second method differs sig-
nificantly from SAMC in the way the in-
structions are divided into streams. This
is done in a predetermined way taking
into account the particulars of the instruc-
tion set for which it is applied. This means
that a dictionary has to be created which
stores opcodes or opcode combinations.
The dictionary generator uses a greedy
method to decide which values to put
into the dictionary based on the estimated
gain in savings using entropy information.
The streams are finally encoded using
Huffman.

Lekatsas and Wolf give some experi-
mental results in their paper for both
methods. They described their method
with machine code of typical RISC (MIPS)
and CISC (x86–Pentium Pro) architec-
tures and compare the results measured
on the SPEC95 benchmark programs.
Their results show that SADC can pro-
duce significantly better results since it
uses specialized information. However, it
is much harder to implement in hardware
and is less general. They also report that
MIPS can be better compressed than x86.
They finally conclude that the results are
slightly worse compared to those using
gzip, which is a file-based technique that
can take advantage of finding long repeat-
ing sequences. The average compression
ratios are about 0.5 for MIPS and 0.7 for
x86. Overall, SADC performs about 5–10%
better than SAMC.

4.6.2. Improvements. In Lekatsas and
Wolf [1999a], the authors went in more
detail their Markov model-based method
(SAMC). In their paper, they focused on
the coding scheme (arithmetic), especially
the decoding part. They presented an
arithmetic coding with reduced precision,
which uses look-up tables instead of costly
arithmetic operations. An implementation
of the decoder and its Markov model is also
briefly discussed there in terms of state-
machines.

The SAMC method is described again
with more detail in article [Lekatsas and
Wolf 1999b]. The most important contri-
bution of this paper is, however, that the
authors provide experimental results on
two architectures, Analog Devices Sharc
and ARM’s ARM and Thumb instruction
sets. They also compare the results to
the implicit size-reduction that can be
gained by applying the reduced instruc-
tion set of ARM Thumb over its standard
ARM instruction set (they present some
interesting data according to which the
Thumb code is already smaller than ARM
by about 30%). It is also interesting to
see that the already compact Thumb code
is significantly harder to compress (0.6
for ARM vs. 0.9 for Thumb). The SAMC
generally performs fairly well, only 15%
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worse than gzip, one of the best file-based
compressors.

In addition to compression performance,
Lekatsas and Wolf give some results re-
garding the effect of the block sizes of
the different architectures. They suggest
that the bigger the block, the better the
compression. The last experiment they
made dealt with the decoding speed per-
formance, where the conclusion is that on
average about 2–7 bits can be decoded dur-
ing one cycle, depending on the number of
bits the encoder is looking ahead. Finally,
the authors compare their method to sim-
ilar related results like IBM’s CodePack
(Section 4.7), Lekatsas and Wolf ’s SADC,
and Wolfe and Chanin’s original method
(Section 4.4). The overall result is that the
SAMC method is better than all the oth-
ers, except SADC, which is clearly the best
(see above). In this evaluation, the authors
also comment on the speed and storage of
the different methods.

The overall conclusion is that using the
SAMC method programs can often be re-
duced by more than 50%.

In Lekatsas et al. [2000a], the SAMC
method is explained in terms of energy
saving in embedded systems. They ex-
ploit an approximate arithmetic coding
and a fast table-based decoding relying on
Lekatsas and Wolf [1999a]. This coding
scheme minimizes the number of bit tran-
sitions in external buses, thus reducing
power consumption. Lekatsas and Wolf
even provide some formulas for estimat-
ing the energy costs of the system based
on bus capacitances and voltage differ-
ences. They present results of the analy-
sis of instruction traces of program exe-
cutions by counting the bus-related toggle
count. If we apply this kind of estimate
to the energy requirements, the require-
ments can be reduced by as much as 35%.
They also conclude that the precision of
the applied arithmetic coding has a nega-
tive effect on bit-toggling, which can be im-
portant because the energy consumption
is estimated by the number of bit toggles in
subsequent code values. This implies that
there is a trade-off between huge compres-
sion and lower possibility for low energy
and vice-versa.

4.6.3. The New Post-Cache Approach for
Low-Power. Lekatsas and Wolf in cooper-
ation with Jörg Henkel outlined a novel
approach to system energy saving. In
Lekatsas et al. [2000c], they argue that
code compression is an efficient method
for reducing power on embedded systems
with complete SOCs (SOC means System-
On-a-Chip, which consists of a CPU, sepa-
rate instruction- and data-caches, a main
memory along with data- and address-
buses). The main contribution of the
method is a new architecture for the in-
struction decompressor. Thus, they mea-
sure the energy savings in terms of the
complete system rather than a single ef-
fect like compression ratio (they suggest
that a high compression ratio does not
necessarily produce the lowest energy
consumption).

This new architecture employs the
(same) decompression engine between the
instruction cache and the CPU, rather
than between the memory and cache—
the usual approach from Wolfe et al. on-
wards (Method 4.4). The main advan-
tage of this new post-cache-architecture
is that both data-buses, before and after
the cache, profit from the compressed in-
struction code, since the instructions are
only decompressed before they are fed into
the CPU. Moreover, they employ bus com-
paction by packing the compressed in-
structions into a single bit-stream utiliz-
ing the width of the bus (32 bits). However,
they conclude that bus compaction should
work best for small blocks. They carried
out experiments with different cache sizes,
and they concluded that the bit toggles in-
crease with cache size, but this is satu-
rated at some point (ca. 512 bytes).

The method described was simulated in
their framework, where the energy con-
sumption was estimated and also different
implementation costs of the decompressor
were measured by its synthesis (e.g., they
reported additional power consumption of
the decompressor engine of around 1 mW).
The energy savings were measured in two
ways: without and with the adjustment
of the system to maximum energy sav-
ing with trade-offs to other performance
gains. Without adjustments savings in
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the range of 16–54% were measured,
while with the adjustments they were 22–
82%.

In Lekatsas et al. [2000b], the au-
thors discuss further the post-cache ar-
chitecture and present additional ex-
perimental results. They also present
a design methodology that allows the
hardware/software co-designer to control
parameters of architectural trade-offs
involving speed, power and chip-area.
They concluded that the improvement/
degradation of these parameters are mu-
tually dependent. Different parameters
are involved in the evaluation including
cache size. The results presented suggest
that increasing the cache size has an over-
all benefit on execution time and energy
consumption.

Brief classification
CPR CPR-2 Decompression by hardware.
CHW CHW-1,2 RISC architectures (CISC

has also been investigated).
CDE CDE-4,5 Both approaches are

presented in different
articles.

CCE CCE-0 The code is equivalent.
CCT CCT-4 Machine code.
CGR CGR-4.1 Different cache sizes, a

typical one being 512 bytes.
In terms of the stream
division in SAMC and
SADC, CGR-1 is also
meaningful here.

Effects
ECS 0.5 Various ratios are given ranging

from 0.5 for the MIPS processor
to 0.9 for the ARM Thumb. The
performance greatly depends
on the method applied, target
architecture and coding scheme.

EEX ∅ No effect.
EES −− May decrease because of the

decompression.
ECT M Depends on the coding scheme.
EDT M Depends on the implementation.
EBE M EES may cause problems in time

critical applications.
EEN −35% Using the post-cache approach

even 82% can be gained.
The final results of the authors∑

suggest that ENE depends on
many factors not just on ECS.

4.7. Charles Lefurgy and IBM CodePack

Authors C. Lefurgy, P. Bird, T. Mudge, T. M.
Kemp et al.

Affiliations University of Michigan, IBM
Year 1996–2000

References [Bird and Mudge 1996] [Chen et al. 1998]
[Lefurgy et al. 1997]

[Lefurgy and Mudge 1998] [Kemp et al.
1998] [IBM 1998] [Lefurgy et al. 1999,
2000] [Lefurgy 2000]

Trevor Mudge, Charles Lefurgy et al.
conducted research at The University of
Michigan in the area of code compres-
sion for embedded systems. They pub-
lished several papers on their results
and proposed a dictionary-based compres-
sion method with hardware decompres-
sion. Their work is very similar to the LAT-
based approach (CCRP) by Wolfe et al.
outlined in Section 4.4. This similarity is
because both use statistical compression
and the decompression is done into the in-
struction cache and is triggered on cache-
miss. This means that the granularity of
the compression is a cache-line.

All of the methods are based on ear-
lier work in technical reports [Bird and
Mudge 1996; Chen et al. 1997] and the pa-
per of Lefurgy et al. [1997]. IBM adopted
the dictionary-based compression and im-
plemented it for their PowerPC proces-
sor [Kemp et al. 1998; IBM 1998]. Al-
though there are a number of differences
between their implementation and the
method described in the original articles,
the basic principles are the same (but
no clear connection can be found in the
literature).

Further modifications, adaptations and
improvements can be found in vari-
ous publications. These include the ex-
periments for DSP processors [Lefurgy
and Mudge 1998] and software-managed
decompression (see below). The whole
methodology is summarized in Lefurgy’s
PhD thesis [2000], where a good survey of
related methods can also be found.

With each of the methods described
below, a system configuration with a
good cache-miss ratio (optimal cache size
and refill engine) is needed in order to
minimize any slowdown due to decompres-
sion overheads.
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4.7.1. The Baseline Dictionary Method. The
original algorithm was first described in
Lefurgy et al. [1997], which is in turn
based on earlier work of Bird and Mudge
[1996]; Chen et al. [1997] combining the
results by Liao et al. (this method is
outlined in Section 4.1) and Wolfe et al.
(Section 4.4). The authors described a
(statically) repeating pattern replacement
method using a dictionary and inves-
tigated the behavior of the instruction
cache (I-cache) in an experimental simula-
tion environment. The motivation for the
method is to be able to use smaller pro-
gram memories (usually ROM), in which
the program code is stored in a com-
pressed way. This requirement is traded-
off for performance loss that is needed for
extra decompression activity during the
execution.

The compressed code is created as fol-
lows: The machine code of the program
generated by the compiler is analyzed to
find the frequency of occurences of in-
struction sequences. The most frequent se-
quences (just one instruction or up to a
whole basic block) get a codeword value
that is stored in the program memory in-
stead of the original sequence. The origi-
nal sequence is mapped to the codeword
value using the dictionary. The program,
therefore, consists of intermixed uncom-
pressed and compressed codeword values
(this can be referred to as selective com-
pression, since not all of the data is com-
pressed). The codeword-values are of fixed
length for fast decoding (8 or 16 bit) rather
than using variable length codes as is done
for Huffman codes, say.

The decompression is done on-the-fly
by hardware means in the CPU logic
during the execution of the program: if
a compressed codeword is fetched, the
decompressor logic is invoked, which pro-
duces the native instruction that is trans-
ferred to the execution pipeline. The un-
compressed instructions are transferred
directly.

In order to make it suitable for practi-
cal implementations, several constraints
must be satisfied with this compression
method. The number of dictionary en-
tries and their sizes are limited to a prac-

tical value. Another restriction is that
the branch instructions with offset-values
(relative jumps) are not compressed as the
branch targets are altered by the compres-
sion method. In other cases the modified
control unit handles the branch targets.

Various experimental results are pre-
sented including the compression ratios
(0.61 for PowerPC including the size of the
dictionary) and the measurements about
the inevitable overheads in terms of exe-
cution performance loss.

4.7.2. CodePack. IBM presented Code-
Pack, their code compression method,
which was implemented in their PowerPC
processor in 1998 [IBM 1998]. The com-
pression method applied is not unlike the
work of the researchers at the University
of Michigan.

There are, however, many differences to
the (mainly experimental) algorithm by
Lefurgy et al. The decompressor of Code-
Pack is surely more complicated because
IBM implemented several improvements
to the technique. CodePack is designed
primarily for small embedded applica-
tions, where the code memory size is
an important factor. As is the case with
Lefurgy’s and the previous approaches by
Wolfe et al., the CodePack compression is
transparent to the processor core, that is,
the decompression is achieved using a spe-
cial control logic in the ASIC.

Lefurgy et al. published several ar-
ticles dealing with the investigation of
the CodePack compression method and
its possible improvements [Lefurgy et al.
1999, 2000; Lefurgy 2000]. One interest-
ing comparison is to the ARM Thumb and
MIPS16 reduced instruction sets (viewed
as compression). An obvious advantage of
CodePack (and related methods) is that
it does not need switching to and from
the compressed/uncompressed instruction
set, while having access to the full re-
sources of the processor core (all reg-
isters, full immediate ranges, etc.). The
achievable compression ratio is compara-
ble to the architectures investigated and
there is no need for new compilers since
the native instruction set remains the
same.
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The decompression implemented in
CodePack consists of a decompression unit
on the ASIC chip between the core and the
main memory. The core is unchanged since
it sees the native instructions through
the L1-cache, which is filled with the un-
compressed native instructions (on cache-
miss). The cache-miss address is mapped
to the corresponding compressed address.
The compressed instruction is fetched, de-
compressed and returned to the core. This
is achieved using the dictionary and the
index table.

In the concrete implementation, the 32-
bit codewords are divided into two 16-
bit sections that are encoded separately.
Sixteen instructions are then compressed
into a group of unaligned variable-length
codewords. The compressed program, the
dictionary and the index table are all lo-
cated in the main (ROM) memory. How-
ever, for efficient operation the index-
table is cached and the dictionaries are
stored in a 2Kb on-chip buffer. With this
efficient implementation the decompres-
sion is achieved at 1 instruction per cy-
cle. There are several further implemen-
tation improvements, such as instruction
prefetching and instruction forwarding.
Besides this, Lefurgy et al. [1999] proposes
further improvements for decreasing the
cache-miss cycles.

The achieved compression ratios are
comparable to those of the original meth-
ods by Lefurgy et al., which is roughly
0.6. At the same time not much perfor-
mance decrease is reported; even speedup
is possible because CodePack implements
prefetching behavior, which the underly-
ing processor does not have.

4.7.3. Software-Managed Decompression.
A recent study of the authors of the
method [Lefurgy et al. 2000] is the in-
vestigation of the possibility to replace
the hardware-based decompression by
software means. This would allow more
independence on on various hardware and
compression methods. On the other hand,
serious modifications are required to the
core and the instruction set. Yet the ap-
proach is very interesting and promising
if added to some future processors.

The software decompression is similar
to Kirovski’s method7 (with the signifi-
cant difference in the granularity of the
compression, i.e., block vs. procedure) and
is based on CodePack. The method uses
the instruction cache as a decompression
buffer, into which the decompressed in-
structions are placed on a cache-miss. This
whole procedure is performed by the pro-
cessor itself execution a special cache-refill
routine. To implement this, two modifica-
tions to the instruction set architecture
are needed: exception raising on a cache-
miss and an instruction to modify the con-
tents of the cache.

The authors validated their approach
on a simulator. Further experiments are
presented for different selective compres-
sions: based on cache-miss frequency and
execution frequency (the frequent se-
quences are not encoded to reduce the de-
compression overheads). The achievable
compression ratios based on simulations
are similar (or slightly worse) than those
for CodePack, but the execution slow-
down is less significant due to the simpler
decoding.

Brief classification
Decompression by hardware

CPR CPR-2 (or software).
CHW CHW-1,2 Mainly for mainframe computers.
CDE CDE-4 RISC architectures with different

cache setups, PowerPC for
CodePack; CDE-2 in the case of
the software decompressor,
because new instructions are
involved.

CCE CCE-0 CCE-1 in the case of using a
software decompressor.

CCT CCT-4 Machine code.
CGR CGR-3,4.1 An instruction is the smallest,

while a basic block is the largest
unit that gets a codeword.
However, the whole program is
compressed.

7In Kirovski et al. [1997], the authors introduced a
method for the compression of machine code at the
granularity of the procedures (CGR-5) using an adap-
tive Ziv–Lempel model. Little or no hardware sup-
port is needed for the decompression. A procedure-
cache is used to hold the decompressed procedures,
which need to be large enough to hold the largest
procedure. Frequently appearing code fragments are
abstracted using mini-subroutine calls. A significant
portion of their work deals with the handling of the
defragmentation of this procedure-cache.
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Effects
ECS 0.6 Includes the size of the

dictionary and index table.
EEX ∅ In the case of the software

decompressor EEX increases
due to the decompressor code.

EES −15% Sometimes even speedup is
possible in an optimized
implementation.

ECT L A simple dictionary-based
algorithm.

EDT M Many optimizations are possible
in hardware decompression.

EBE M The unpredictible change of
EES may be a problem in time
critical applications.

EEN −− No data reported.
ECS and EES vary according

to the cache-setup used. EEN∑
is not reported but is probably
improved due to smaller EES
and decreased code-size.

4.8. Code Compression with Hardware
Decompression from Brazil

Authors G. Araújo, P. Centoducatte, M.
Côrtes and R. Pannain

Affiliations University of Campinas, PUC
Campinas, Brazil

Year 1998–1999
References [Araújo et al. 1998] [Centoducatte

et al. 1999]
[Araújo et al. 2000a, 2000b]

Araújo, Centoducatte et al. elaborated
variants of their code compression tech-
niques, whose basic characteristic is that
the decompression is performed by a spe-
cial hardware logic located in front of
the CPU’s instruction fetch unit. The de-
compression is done in real-time during
program execution (i.e., the original in-
structions are generated during instruc-
tion fetch). A big drawback with their ap-
proach is that the decompression engine
needs to be specific for the program it is
decompressing.

In the original paper of Araújo et al.
[1998], the authors propose a method for
code compression that is based on operand
factorization. Similar approaches have
been proposed by others (see, e.g., Methods
4.12, 4.11). Their work differs in the de-
compression technique since it is designed
to be applicable in real-time environments
through a hardware logic. Another dif-
ference is that they compress expression

trees, as produced by the compiler from
the internal representation (based on Aho
et al. [1985]). These trees contain the
machine code patterns representing the
expressions.

The basic idea is that the input program
(more precisely, the expression trees with
machine code instructions) is separated
into two components: (1) the tree-patterns,
which contain the opcode fragments of the
expression (they do not contain branch
instructions nor cross basic block bound-
aries) and (2) the operand-patterns, which
contain the registers and immediates.
The tree-patterns are identified using
the algorithm in Aho et al. [1985]. They
present some results, in which it is stated
that the tree-patterns can occupy only
a slight portion of all expression trees
in the program (about 1%) and that the
same is true for the operand-patterns as
well. Hence, their separate encoding is
justified.

These patterns are then composed into
a sequence of codeword pairs, containing
the encoded patterns. They experimented
with several different (variable-length)
encoding schemes, such as Huffman,
bounded Huffman and VLC encoding
[Haskell et al. 1997]. Different encod-
ings require decompression engines of var-
ious complexity. Using the approach of
Araújo et al., a silicon part gained by
high compression ratio can be traded for
an improved design of the decompression
engine.

Probably the most important contribu-
tion of this method is the description of a
novel decompression hardware logic that
reassembles the original instructions from
the encoded codewords. It must be used
as a modification in the CPU instruc-
tion fetch mechanism. It has some limi-
tations though, such as that branch in-
struction must be aligned to codeword
boundaries and that the fixed base ad-
dress width (21 bits) can necessitate an
extra jump table in some cases. They
claim that the decompression engine over-
heads are relatively small, on average
8%.

An overall size-reduction of 0.43 and
0.48 can be produced by the method for
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different encoding techniques, and these
ratios include an estimate of the de-
compression engine size (the best pure
ratio is 0.35). The authors performed
the experiments for a typical RISC
processor.

In the article [Centoducatte et al.
1999], the authors adapted their previ-
ous method to DSP architectures (they ap-
plied it to a common DSP processor). The
major difference with this method is that
the expression trees are not decomposed,
but they are encoded as a whole. The rea-
son for this is that for the DSP processors
the operand factorization has more re-
dundancy (the DSP instructions are more
compact).

Another feature of the author’s new
method is that it uses a simple encoder
based on simple statistics about the fre-
quencies of individual expression trees,
rather than using Huffman or VLC.

Centoducatte et al. describe an outline
of the decompression hardware as well
in the second paper which translates the
compressed codewords into the original in-
structions for the CPU. The compressed
codewords are stored in a variable-length
form. They even prepared simulations
of the decoder logic with which esti-
mated complexity overheads could be de-
termined. They report that the average
compression ratio was 0.28, but taking
into account the size of the decompres-
sion engine the final ratio is on average
0.75.

The whole method is described in more
detail and with additional experimental
results in the articles [Araújo et al. 2000a,
2000b].

Brief classification
CPR CPR-2 Decompression by hardware.
CHW CHW-1,2 Primarily RISC; special

application to DSP.
CDE CDE-2 Special logic for the

instruction fetch of the
CPU.

CCE CCE-0 Equivalent after
decompression.

CCT CCT-5 Machine code in the form of
expression trees

CGR CGR-7 The whole program at once.

Effects
ECS 0.43 0.75 for the DSP application. The

data includes an estimate of the
decompression engine size.

EEX ∅ No effect.
EES ∅ No effect.
ECT M Standard Huffman and VLC

encodings.
EDT +8% Sophisticated decompression

hardware has to implement the
decompression (+47% for the
DSP).

EBE ∅ No effect.
EEN ? Complex decompression may not

be good for energy, however if it
is inside the same ASIC the
reduced code-size may be
beneficial because of the fewer
accesses to external ROM.

The achievable compression ratio∑
is reciprocally proportional to
the complexity (and size) of the
decompression engine.

4.9. Philips ThumbScrews

Authors R. van de Wiel et al.
Affiliations Philips Research

Year 2001
References [Hoogerbrugge et al. 1999] [van de

Wiel et al. 2001] [van de Wiel and
Hoogendijk 2001]

Philips investigated various solutions
for reducing the size of the embedded soft-
ware in their electronic products. Unfor-
tunately very little information is pub-
licly available on the current research and
results of their approach. In a Philips
Research magazine, van de Wiel and
Hoogendijk [2001] summarize their ap-
proach for software compaction in general
(not just code-size reduction is discussed
but other data compression techniques as
well).

Regarding the code compression method
utilized by Philips, the white paper [van de
Wiel et al. 2001] provides an overview of
the basic idea of the so-called “Thumbs-
Screws” approach. ThumbScrews is a gen-
eral solution for reducing the required
memory size of an embedded program8 for
all kinds of standard microprocessors and
controllers (although their primary imple-
mentation is for ARM Thumb code).

8The authors refer to the method as code compaction;
however, using the terminology of this survey, we
rather treat it as a code compression method.
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The basic idea behind the ThumbScrews
approach is to extend the compiler with a
special target for code generation. The tar-
get architecture is a virtual processor with
a special instruction set. A program com-
piled for this architecture is basically the
compressed program that is stored in the
program memory and is translated (i.e.,
decompressed) before the execution on the
native processor.

This approach is basically a dictionary-
based method for storing the program code
in a compact way. A dictionary (mem-
ory table) is used to store the transla-
tion scheme (i.e., the way compressed in-
structions should be translated into native
instructions). The compressed instruction
set consists of (1) basic instructions and (2)
macro instructions. The basic instructions
are simply the encoded versions of basic
instructions of the native processor. The
macro instructions on the other hand en-
code sequences of native instructions that
occur repeatedly in the code (i.e., they are
entries to the dictionary which contains
the sequences themselves). The instruc-
tions are encoded using variable length
encoding (Huffman). Depending on the re-
quired performance vs. flexibility trade-
offs, the dictionary itself can be imple-
mented via RAM, ROM, or hardware logic.

Once the compressed program is stored
in the program memory, it must be decom-
pressed (translated) to native instructions
before the execution of the program. This
task is done by a hardware decompres-
sor module located between the program
memory and the CPU. The decompressor
translates each basic instruction into one
native instruction and each macro instruc-
tion into a series of native instructions.
The decompressor must keep track of the
address of the next compressed instruc-
tion in the program memory (this issue is
not elaborated in detail in the white paper,
although the correct handling of runtime
addresses is generally not simple, see, e.g.,
method 4.4).

The method is suitable for different
hardware architectures also involving an
instruction cache. In this case, the authors
suggest to put the decompressor between
the cache and CPU core in order to de-

crease the bus load by translating the com-
pact code as late as possible. Of course,
the cache line must be correctly handled
(i.e., flushed and refilled) in the case of
branch instructions. This introduces addi-
tional delays in execution.

There is not enough information pro-
vided on how the compression process and
preparation of the dictionaries are carried
out (in the article below [Hoogerbrugge
et al. 1999] just the description is given of
how the CFG-based internal representa-
tion is processed to find repeating expres-
sion trees). In general, ThumbScrews con-
sist of a compilation and compression tool
chain that produce the final program in
the compressed instruction set along with
the required dictionary (the decompressor
and the tool chain contains the possibil-
ity for debugging as well). The tools an-
alyze the source program and determine
the best set of macro instructions for the
program. Basically, the macro-instruction
set is fixed for a subject program, but if
the the table is to be implemented in ROM
or hardware logic it can be specific for an
application area (this way the software
may be exchanged within this area with-
out much degrading the compression ca-
pability). The tools support the production
of mixed executables where the code may
contain intermixed native and compressed
instructions. Since the execution of com-
pressed code involves some performance
decrease (see below) this feature can be
useful where high speed performance (or
other critical issue) is needed by allowing
it to be in native code. Of course, this must
be supported by the execution engine as
well, which simply means that if a non-
compressed instruction is fetched the de-
compressor may be bypassed.

The reported compression ratios are
quite typical for dictionary-based meth-
ods with variable length encoding. For
instance, in an ARM environment, the
ThumbScrews code is about 30% smaller
than the same program compiled for the
ARM Thumb instruction set. With other
architectures with less compact instruc-
tion sets, this can be higher.

The decompression process before the
execution adds some additional cycles to
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the execution. This additional decompres-
sion activity results in an average de-
crease of 40% in execution time if the CPU
is capable of fetching the next instruction
in one cycle. The authors report, however,
that if the processor has to wait more than
one cycle the execution time converges to
the uncompressed program execution.

Some of the basic techniques applied in
ThumbScrews seem to be based on a pre-
vious work of the authors [Hoogerbrugge
et al. 1999]. Here a compression method is
described for a proprietary VLIW proces-
sor architecture. The compressed program
is also in a form of a compact virtual in-
struction set. In contrast to ThumbScrews,
this program is interpreted in software
(classification CPR-3) using pipelining in
the CPU so as to reduce the interpretation
overheads. No special encoding is used ei-
ther such as Huffman. One of the similar-
ities with ThumbScrews is the fact that
using this method the program is also par-
titioned on a per-function basis into crit-
ical and noncritical code to allow mixed
executables comprising of compressed and
noncompressed code. Furthermore, one of
the main contributions of this article is the
more detailed description of how the com-
pressed code is produced.

Brief classification
Decompression by hardware

(interpretation is also
CPR CPR-2 involved in some respect).
CHW CHW-1,2 Mainly for but not limited to

embedded systems.
CDE CDE-5 Post-cache is proposed,

although the method is not
dependent on the intended
architecture.

CCE CCE-2 Since there is no such thing
as the uncompressed code
(the IR is used instead)
the translated native code
is only functionally
equivalent (to the IR).

CCT CCT-2,4 In some respects the internal
representation is used for
compression rather than in
machine code form, but the
final decompressed code is
the machine code.

CGR CGR-3 A native instruction is gained
by translating one
compressed basic
instruction or macro.

Effects
ECS 0.7 Does not include the space

needed for the dictionary.
EEX ∅ No effect.
EES −40% This is due to decompression by

hardware; may improve
depending on the processor’s
fetching capability.

ECT H Compiler techniques are
probably used to find and
translate the macro
instructions but the concrete
complexity of dictionary
creation is unknown.

EDT M The translation is relatively
simple but the handling of
addresses may be difficult.

EBE L The risk in timing-critical code
(see EES) can be eliminated
by leaving it in native form.

EEN −− The decompression consumes
extra energy but the overall
effect may be beneficial
because there are fewer
external program memory
accesses.

EBE mainly depends on EES
and the selection of the non-
compressable code. The
dictionary may be program-∑
specific (high ECS and low
flexibility of the system) or
application area-specific (lower
ECS but higher flexibility of
the system). The ECS also
depends on how clever the
compression algorithm is in
finding the repeats (ECT).

4.10. Automatic Inference of Models by
Fraser

Authors Christopher W. Fraser
Affiliations Microsoft Research

Year 1999
References [Fraser 1999]

Fraser [1999] proposes a method for ap-
plying machine learning to code compres-
sion. He describes the basic approach for
inferring the models for the compression
and presents some experiments. However,
other issues, such as encoding and applica-
tion of the decompressor, are not the sub-
ject of the article.

There are several related approaches to
code compression that utilize various ar-
tifacts in program code and their differ-
ent (statistical) characteristics, primarily
the opcodes and operands of machine lan-
guage programs. These methods separate
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the program into streams, trees or other
representation, which are encoded sepa-
rately. This separation is typically done
by humans in a more ad hoc manner. See,
for example, Methods 4.11, 4.12 and 4.8.
On the other hand, in Fraser’s method,
this partition is done automatically by the
means of machine learning technique that
tries to produce the best possible streams
for compression.

The method accepts a large amount of
training data in the form of intermedi-
ate program representation and automat-
ically infers a decision tree, which can
be later used to separate the IR code
into streams that compress much better
than the undifferentiated whole. The deci-
sion tree produces statistical models that
contain the necessary probabilistic distri-
bution that can be used by arbitrary sta-
tistical coding methods (e.g., arithmetic).
The nodes of the decision tree (the decision
points) contain predictors, using which the
tree can be later traversed and used. The
predictors are, in a sense, binary func-
tions that take some information based on
the current input. The predictors (P ) all
have two children: one for which the pre-
dictor equals a value (VP ) and one for all
others.

The basic idea behind the method is
the observation that to encode the undif-
ferentiated input using some statistical
data (characterized by the entropy of the
stream) is less effective than coding the
separated streams using the local statis-
tical data (with the local entropies). The
learning of the model (i.e., the creation
of the decision tree) is therefore based on
reducing the entropy of the divided
streams. This means in practice that the
tree is decomposed into lower levels if the
minimal sum of the differentiated entro-
pies is less than that of the undifferenti-
ated parent. More precisely, the minimal
sum of entropies in each partition is com-
puted for every predictor. If the minimal
sum is less than the entropy of the whole
sample (or subtree), do the partition recur-
sively, otherwise use the undifferentiated
distribution. This way, the leafs of the de-
cision tree contain nearly optimal proba-
bilistic distributions for the given input.

The tree itself is a kind of a classic de-
cision tree with the difference that in this
case it is binary in a sense that each node
has two children: one for the positive an-
swer of the actual predictor and one for the
negative.

Once the tree is inferred (i.e., learnt)
from the large amount of training data
(which must be representative in order
that it can be used for unknown inputs as
well), the tree can be used to compute a
nearly optimal model for the encoder from
unknown inputs. (The whole procedure is
necessary because the computation of the
best entropy-based distributions and the
learning of the tree is a very computation-
ally demanding task, while the decision
making based on the ready tree is very
fast.)

The predictors are used to identify dif-
ferent context of the actual program point,
based on which the decisions are made.
These are typically used to investigate the
type of the last tokens in the input (the so-
called “Markov” predictors using the last
10–20 tokens) or some other computed val-
ues like the actual stack height.

Based on this, the usage of the tree is
simple. The raw input (the intermediate
representation taken from the compiler
front-end) is separated into tokens like op-
codes and operands and a table of predic-
tor values is prepared. Then the tree is
traversed for the input tokens (beginning
from the root and simply going down to
one of the leafs) using the actual predictor
values to get the distributions present at
the leafs, which are then used to encode
the streams.

The article presents some impressive
experimental results. Comparisons of this
method are made with traditional (general
purpose) compressors like gzip and code
compressors like Method 4.11. Driving a
typical arithmetic coder, this method pro-
duced a compression ratio of 0.19, which is
significantly better than the other related
methods (e.g., 30% better than Method
4.11 and 29% better than gzip). They also
report that the achievable compression is
24% smaller than by using an output of
an optimizing compiler with a good data-
compressor.
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An obvious disadvantage of this ap-
proach is that the “lost” information which
is missing from the reduced-sized code is
encoded in the decision tree. The decision
tree, however, can be quite large in gen-
eral. The authors propose some efficient
techniques to aid this problem and reduce
the size of the tree. Since the decoder must
implement the decision tree in order to be
able to reproduce the uncompressed input,
the actual compression ratios should in-
clude this overhead. The given compres-
sion ratios for this method do not include
this value but, as noted earlier, in many
cases the size of the tree can be greatly
reduced.

Another drawback can be that, without
adaptation, it is not possible to use the
method in situations where random jumps
are present because the code needs to be
decompressed completely before it can be
used.

Brief classification
CPR CPR-2 Only modeling is described.
CHW CHW-0 An incomplete compression

method.
CDE CDE-0 An incomplete compression

method.
CCE CCE-0 The code is equivalent.
CCT CCT-2 IR, but could be applied to

CCT-4, too.
CGR CGR-7 Could be adapted to others as

well.

Effects
ECS 0.19 (20–30% better than a general

compressor.)
EEX ∅
EES ? No effect on the instructions, but

decompression would be needed
before execution.

ECT L/H Once the decision tree is ready
ECT is not too complex, but the
tree inference is hard.

EDT M Depends just on the applied coder
and structure of the tree.

EBE —
EEN ? The high compression ratio can be

beneficial.
The achievable compression ratio∑

is reciprocally proportional to
the size of the decision tree (and
therefore to the decompressor).

4.11. University of Arizona with Microsoft

Authors C. W. Fraser, T. A. Proebsting,
J. Ernst, W. Evans et al.

Affiliations University of Arizona, Microsoft
Research, AT&T Bell Labs.

Year 1995–1997
References [Fraser and Proebsting 1995]

[Ernst et al. 1997]

This section presents a set of related
publications involving a group of authors
whose most important results were pub-
lished Ernst et al. [1997]. The common
property of the methods is that a run-
time system including an interpreter and
decompressor is assumed. This is be-
cause the result of the decompression
is not native machine code, but a low-
level intermediate code (e.g., IR tree) that
must be either interpreted or just-in-time
(JIT) translated. The motivation for this
method is that it is faster to send com-
pressed code that is then interpreted or
decompressed and executed at the client
side. Two important bottlenecks are con-
sidered: transmission and memory. In the
first case, a wire code compression is used,
while in the second one the compression
for interpretable code.

The approach is that the IR code is
patternized in order to create separate
streams of literal operands and repeating
fragments of code instructions. These are
then compressed in various suitable ways
and transmitted. Using this method re-
markable compression ratios as good as
0.2 can be attained, but the decompression
may involve very sophisticated technolo-
gies such as client-side compilation and
interpretation.

Ernst et al. [1997] present two tech-
niques for compressing IR code (but it
could possibly be applied to machine code
as well). They present two bottlenecks as
their motivation: transmission and mem-
ory, thus they suggest using the algo-
rithms as a means of transferring and
distributing executable code. This may be
a serious hindrance to its use in certain
class of applications, such as embedded
systems.

The transmitted data is, in fact, a set
of streams of compressed data using stan-
dard general compression methods such
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as gzip and move-to-front (MTF) coding.
Before compression and transmission, the
input code is manipulated using various
techniques.

In their paper, Ernst et al. present two
basic techniques that can be applied in dif-
ferent scenarios of the above-mentioned
motivations: wire code and interpretable
code.

Wire code. This technique is used to
gain high compression ratios by the ap-
plication of different sophisticated com-
pression methods. With this method sepa-
rately compressed streams are produced,
which are then compressed using suitable
compressors. On the client side, the de-
compression consists of the decompression
of the various streams and their trans-
lation (interpretation and/or JIT compi-
lation) into the native code. The full
compression algorithm involves several
distinct steps, which we will not de-
scribe in detail here. However, the tech-
niques involved in the preparation of the
compressed streams include literal pat-
ternization (operand literals are placed
into a separate stream), MTF coding,
Huffman coding and gzip-ing.

Interpretable code. With this technique
an encoded instruction-stream is pro-
duced, which is of a special form called
BRISC (Byte-coded RISC), an inter-
pretable virtual machine (VM) code. This
is transferred to the client along with a dic-
tionary containing the information needed
to construct the native code. This one is
probably more suitable for random access
and code execution than the previous ap-
proach. The algorithm for preparing this
special code includes sophisticated tech-
niques for the manipulation of the IR code
such as operand specialization and opcode
combination. The operand specialization
patternizes the operands of an instruc-
tion, thus producing several combinations
of patterns for the same instruction. Op-
code combination means finding instruc-
tion pairs (or N-tuplets) which are fre-
quently used together.

The algorithm uses the techniques out-
lined above together to produce a heap of

candidate instructions. This heap is iter-
atively updated using different combina-
tions of operand specialization and mak-
ing opcode pairs, triplets, N-tuplets, etc.
The candidates are selected as described
below and inserted into the dictionary (de-
compressing table). A greedy algorithm is
used to select the best dictionary candi-
dates, which will produce the smallest out-
put data containing both the dictionary
and the code stream. It uses the best K
candidates based on a benefit value esti-
mated for a concrete operand specializa-
tion and the opcode combination taking
into account the program size reduction
and the inevitable overheads introduced
by the dictionary. Consequently, it does not
always produce the best result.

The decoding means on-the-fly interpre-
tation of the BRISC code or JIT compila-
tion by the client.

Brief classification
Interpreter (and/or JIT) is

CPR CPR-3 required.
CHW CHW-2 Mainframe computers.
CDE CDE-1 Complicated decompression

mechanism.
CCE CCE-2 Functional equivalence (the

input is in another form).
CCT CCT-2 IR.
CGR CGR-7 The whole program at once.

Effects
ECS 0.2 Best case for the wire code, BRISC

performs around 0.6.
EEX — The input is in another form.
EES −− Compiler/interpreter on the client.
ECT H Many different techniques are

involved.
EDT H Compiler/interpreter on the client.
EBE — Depends on the compiler.
EEN ? Complex decompression may not

be good for energy.
The remarkably high compression∑

ratios have a trade-off in complex
compression/decompression
algorithms.

4.12. Slim Binaries

Authors M. Franz and T. Kistler
Affiliations University of California at Irvine,

ETH Zürich
Year 1993–1997

References [Franz 1994, 1997] [Franz and
Kistler 1997]
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“Slim Binaries” is the result of a project
done over several years at Franz’s orig-
inal university, ETH Zürich. The fruits
of his labours were then published in
his PhD dissertation [Franz 1994]. Since
then the method has appeared in several
publications (e.g., Franz [1997]) of which
the ACM Communications article proba-
bly gives the best overview with some ba-
sic technical details [Franz and Kistler
1997].

The notion of Slim Binaries is—as the
authors call it—an infrastructure incor-
porating different techniques in a uni-
fied environment. Its purpose is to achieve
flexible software portability and efficient
program execution while at the same time
preserving cross-platform compatibility in
the binary form of the programs.

Two basic observations motivated the
method. The first one is that the input
and output speed of computer memories
and peripheral devices do not grow at the
same rate as the raw computational power
of microprocessors. This means that in
recent years it is increasingly more effi-
cient to recalculate some intermediate re-
sults than to off-load them to secondary
storage and read them back later [Franz
and Kistler 1997]. The second observation
was that cross-platform software releases
have recently evolved and that for soft-
ware vendors, to provide their products
in different binary formats, they needed
to do this using the so-called fat bina-
ries, where multiple versions of the same
program within a single object file were
presented.

In sharp contrast, slim binaries can pro-
vide efficient storage of the program in a
platform-independent intermediate repre-
sentation format, which is, in addition, in
a compressed form. The execution of the
program is performed by fast decoding and
simultaneous code-generation.

This kind of representation of the soft-
ware binaries means that the object file
of the program contains the “slim binary”
plus the decoding engines that will provide
the on-the-fly code generation.

Franz et al. argue that their implemen-
tation significantly reduced the overall
storage requirements of the binaries. They

present an example where an application
in a “fat binary” form with three platforms
had the overall size of 8.8 Mbytes, while
the slim binary form including the on-the-
fly compiler contained only 2.7 Mbytes.
Taken the target binaries independently
they could achieve compression ratios of
about 0.35 with respect to the slim binary.

The method has the apparent drawback
that the execution speed of the program is
decreased because of the code generation
tasks. However, based on the initial ob-
servations, the extra computations are far
more economic than the secondary storage
costs.

Slim binaries are created using the in-
termediate representation of the compiled
program. More precisely, the abstract syn-
tax tree generated by the compiler front-
end is stored in a compact way (this means
different kinds of generalizations on the
recurring subexpressions). This tree is en-
coded by applying a predictive compres-
sion scheme, based on adaptive meth-
ods like LZW [Welch 1984]. The tree is
traversed and encoded into a stream of
symbols from a continually evolving vo-
cabulary. This vocabulary is updated us-
ing adaptation and prediction heuristics.
It contains variations of common subex-
pressions in some generalized form (e.g.,
the expression i + 1 can be encoded by
“i-plus-something” and “literal one” and
later when a similar expression is found
with a different constant, it will only refer
to the previous subexpression code with a
different literal). The authors claim that
encoding syntax trees has many advan-
tages over compressing character streams.
One is that recurring common subex-
pressions can be efficiently encoded this
way.

The application of the slim binaries
technique includes:

(1) to preserve the above-mentioned effec-
tive cross-platform compatibility of the
binaries,

(2) dynamic linking of software modules,
(3) extensible systems such as active doc-

uments containing program code,
(4) use with intelligent agents.
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The authors initially integrated their
method into an Oberon operating envi-
ronment on the Macintosh platform, the
MacOberon. This environment uses appli-
cations written in the Oberon language
(although they claim that the method can
be easily adapted to other languages as
well). The applications are stored in slim
binaries and upon their execution, the on-
the-fly code generators create the native
Mac binary code.

Apart from the obvious delay in the exe-
cution (they report about double startup
times for a typical application), another
drawback of the method can be that the
code generation may be too complex for
certain platforms like RISC processors
(and the more complex processors would
also require more complex code generation
strategies). The implemented code gener-
ation is therefore chosen to be fast but
not so efficient comparing to the modern
optimizing compilers. However, they pro-
pose a solution to this problem in terms
of background code-generation, where a
central thread continually optimizes all of
the already executing code in the back-
ground (which can use aggressive, albeit
slow, optimization techniques). This opens
the possibility of optimizing the code ac-
cording to the profiling data collected so
far.

An obvious similarity of this approach
is the one with the Java byte-code and
its virtual machine technology. However,
there are obvious advantages of the slim
binaries over the other. Namely, the Java
byte-codes are at a much lower semantic
level (the slim binaries store syntax trees
while the byte-codes are only low-level in-
structions) and therefore their compaction
is not so efficient (the authors report
that their binaries are twice as dense
as Java byte-codes). Another advantage
is that the code-generation of the syntax
trees of slim binaries can be easier to im-
plement (on the other hand, their byte-
to-byte interpretation is not possible).
Talking about Java, we should mention
that Java byte-codes are compressed with
CGR-6 granularity with respect to a Java
class.

Brief classification
On-the-fly code generation is

CPR CPR-3 required.
CHW CHW-2 Mainframe computers.
CDE CDE-1 On-the-fly code generation into

RAM.
CCE CCE-2 Functional equivalence (the

input is in another form).
CCT CCT-2 IR (abstract syntax tree).
CGR CGR-7 (Java byte-codes are CGR-6.)

Effects
ECS 0.35 Typical value.
EEX — The input is in a different form.
EES ÷2 Execution time doubles because

code generation is required
before execution.

ECT H Source code analysis and adaptive
compression is involved.

EDT H Decompressor and (optimizing)
code generator on the client.

EBE — Depends on the compiler.
EEN ? Decreased code-size is good but

code generation needs extra
space and computation.

The better code is generated, the∑
more complex decompression is
involved, therefore EES is
decreased.

5. EVALUATION OF THE METHODS

We evaluate the twelve methods of the sur-
vey using our assessment criteria defined
in Section 3 and the results of the assess-
ment in the previous section. For the ta-
bles and diagrams, we use the data de-
scribed in the tables at the end of each
section corresponding to the methods.

5.1. Summary of the Methods

In this section, we summarize our classifi-
cations given at the end of the discussion of
each method. The table below contains the
results on the classification assessment.
The methods are listed according to their
section number.

Method CPR CHW CDE CCE CCT CGR
4.1 Cooper & 1 1,2 0 2 4 7

McIntosh
4.2 Squeeze 1 1,2 0 2 4 7
4.3 Narrow-Word 2 1,2 3 0 4 7
4.4 Wolfe (LAT- 2 1,2 4 0 4 4.1

based)
4.5 Breternitz 2 1,2 4 1 4 4.1
4.6 Lekatsas & 2 1,2 4,5 0 4 4.1,1

Wolf
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4.7 CodePack 2 1,2 4 0 4 3,4.1
4.8 Brazil 2 1,2 2 0 5 7
4.9 ThumbScrews 2 1,2 5 2 2,4 3

4.10 Model 2 0 0 0 2 7
inference

4.11 Arizona- 3 2 1 2 2 7
Microsoft

4.12 Slim 3 2 1 2 2 7
Binaries

The next table offers a quick reference
of the methods according to their clas-
sification in Section 4 (the numbers cor-
respond to the subsection numbers of
Section 4). The table could be useful when
a suitable method is sought based on
requirements related to its application,
which may be assessed according to our
classification. The reader should bear in
mind that the CHW classification is inter-
preted differently from the others and is
described in Section 3.1.

CPR-1 compactors 1, 2
CPR-2 compressors 3, 4, 5, 6, 7, 8, 9, 10
CPR-3 interpreter- (9), 11, 12

based
CHW-0 n/a 10
CHW-1 SOC/embedded 1, 2, 3, 4, 5, 6, 7, 8, 9
CHW-2 mainframe 1, 2, 3, 4, 5, 6, 7, 8,

9, 11, 12
CDE-0 n/a, software- 1, 2, 10

based
CDE-1 sw-based with 11, 12

memory
CDE-2 modified CPU 8
CDE-3 without cache 3
CDE-4 pre-cache 4, 5, 6, 7
CDE-5 post-cache 6, 9
CCE-0 complete 3, 4, 6, 7, 8, 10
CCE-1 as seen by the 5, (7)

CPU
CCE-2 only functional 1, 2, 9, 11, 12
CCT-0 non-code
CCT-1 source code
CCT-2 IR (1), 9, 10, 11, 12
CCT-3 assembly
CCT-4 machine 1, 2, 3, 4, 5, 6, 7, 8, 9
CCT-5 special 8
CGR-0 irrelevant (10)
CGR-1 bit sequence (6)
CGR-2 character
CGR-3 instruction 7, 9
CGR-4.1 small block 4, 5, 6, 7
CGR-4.2 large block
CGR-5 procedure see Kirovski et al.

[1997]
CGR-6 translation unit
CGR-7 program 1, 2, 3, 8, 10, 11, 12

Another interesting issue regarding the
compressor-type methods (CPR-2) is their
choice of the applied modeler/coder combi-

nation (see Section 2 for background de-
tails). In some cases, it would be ben-
eficial if the modeler or coder could be
adapted to a certain application. The ta-
ble below might help one choose the ap-
propriate method by listing the applied
coding scheme (compactors do not use any
coding).

Method Coder
4.3 Narrow-Word Dictionary
4.4 Wolfe (LAT-based) Huffman
4.5 Breternitz Huffman
4.6 Lekatsas & Wolf Arithmetic
4.7 CodePack Dictionary
4.8 Brazil Huffman
4.9 ThumbScrews Dictionary

4.10 Model inference (Arithmetic)
4.11 Arizona-Microsoft Dictionary
4.12 Slim Binaries Dictionary

5.2. Summary of the Effects

In this section, we provide an overview of
all of the effects looked at in the meth-
ods investigated. The table below summa-
rizes the effects found for each method (the
methods marked with a * have important
remarks concerning their compression ra-
tio, which are given below).

Method ECS EEX EES ECT EDT EBE EEN
4.1 Cooper & 0.95 ++ −− M — H ?

McIntosh
4.2 Squeeze 0.70 −− ++ H — H ?
4.3 Narrow-Word −− −− ∅ L ∅ ∅ −50%
4.4 Wolfe (LAT- 0.73 ∅ −− M M M −−

based)
4.5 Breternitz 0.56 ++ −− H M M ?
4.6 Lekatsas & 0.50 ∅ −− M M M −35%

Wolf
4.7 CodePack* 0.60 ∅ −15% L M M −−
4.8 Brazil* 0.43 ∅ ∅ M +8% ∅ ?
4.9 ThumbScrews 0.70 ∅ −40% H M L −−

4.10 Model 0.19 ∅ ? L M — ?
inference*

4.11 Arizona- 0.20 — −− H H — ?
Microsoft*

4.12 Slim Binaries 0.35 — −50% H H — ?

In the following, separate diagrams are
provided for each effect presenting the de-
tailed data, which provide a basis for com-
parison for each method.

Notice that many of the effects could
not be determined completely for every
method investigated. Another problem
was that, in some cases, no numeric data
was available. Hence, we employ some spe-
cial notations in the diagrams to allow for

ACM Computing Surveys, Vol. 35, No. 3, September 2003.
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Fig. 1 . Effect on the size of the compressed code (ECS).

comparisons between the various meth-
ods. In general, the estimated values
are denoted by light bars, while the
darker bars correspond to concrete
values. For those effects where a decrease
or an increase could be measured, we
used the ratio modified/original, where 1
stands for no change. Values greater than
1 mean an increase, and smaller than 1
mean a decrease. At those places where
no concrete values are given (light bars)
and only an increase or decrease is listed
(e.g., EEX), we assume an increase or de-
crease of 10% (which is a very imprecise
estimate, but there is no other way of in-
cluding these values in the comparison).
For example, the ECS effect for Method 4.3
is assigned a value of 0.9. For results with
three-value estimates denoted by L, M and
H, we used 0 to indicate an unknown, no-
impact or not-applicable value.

The most important effect is ECS, the
effect on the size of the (compressed) code.
In other words, this gives the achievable
compression ratio. As mentioned earlier in
Section 3.2 and elsewhere, the main diffi-
culty with this ratio is that the methods
do not always describe whether the mea-
surements contain the size of the modeler
and/or decoder. In fact, only methods 4.7
and 4.8 explicitly state that their results
contain these overheads. Another example
is method 4.10, where it is clear that the
given (rather high – 81%) ratio does not in-
clude the size of the model, which can be

quite high in general (see the correspond-
ing section for details). The other method
with the highest ratio is 4.11. The given
numbers (80%) are best case and should be
also viewed with caution because it is not
clear whether this ratio can be achieved if
all of the overheads are incorporated with
all the variations of the method.

In Figure 1, we can see the compression
ratios given by the methods. Note again
that the value for Method 4.3 is inaccu-
rate, it is only an estimate of 0.9, since the
publication fails to give precise results on
the compression ratio of this method.

We also prepared similar diagrams to
demonstrate the other effects for the
methods investigated, which are shown in
Figures 5 to 10 in the Appendix.

In Figure 2, we can see a summary of
three important effects, which often have
mutual impact on each other: the compres-
sion ratio, the number of executed instruc-
tions and energy consumption. It may be
concluded here that there is a correla-
tion between EEX and EEN in the sense
that more executed instructions require a
higher energy consumption. Another ob-
servation is that where a significantly
higher compression ratio is obtained (e.g.,
Method 4.11), the other two effects are
degraded.

In a combined diagram shown in
Figure 3, the compression ratio can be
compared with the compression and de-
compression time/complexity measures.
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Fig. 2 . Summary of effects for EEN and EEX. Many of the values are esti-
mates (see text).
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Fig. 3 . Summary of effects for ECT and EDT. Many of the values are esti-
mates (see text).

Not surprisingly, the simpler methods pro-
duce worse ratios (EDT in particular).

5.3. Effects on Each CPR

In this section, we summarize how the
effects depend on the basic classification
of the method, namely the CPR—size-
reduction principle. For each effect, we
computed the average values for each of

the three CPR groups. It may be seen in
Figure 4 that the interpreter-based meth-
ods (CPR-3) produce the best compression
ratios, but they are also more involved as
well. With these methods the effect on the
execution speed (EES) is also significant,
since the interpretation (compilation) of
the compressed code also involves runtime
overheads.
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Fig. 4 . Which CPR is best for a specific effect?

On the other hand, compressors (CPR-2)
produce acceptable ratios as well, but they
are simpler to implement. The only type
of methods, which report concrete energy
measurements is also this type.

The compactors (CPR-1) can produce
only modest compression ratios, but in this
case there is no need for decompression at
all. Another observation is that since they
produce modified code, the effect on behav-
ior safety (EBE) is rather high.

5.4. Conclusion about the Energy Aspects

As pointed out earlier, the question of en-
ergy consumption is very important for
some applications, mostly embedded sys-
tems. It is also interesting to note that
this issue appeared to be related in various
ways to code compression. Several meth-
ods were concieved simply because of this.
These mostly belong to the CPR-2 group,
where the energy saving is achieved by re-
ducing the access to program memory (in
many different ways, as can be seen from
the method descriptions in Section 4).

Altogether, it is difficult to form rea-
sonable conclusions about the most ap-
propriate methods to use for energy sav-
ing. There are several reasons for this.
Firstly, energy saving is not a primary
aspect of many methods. However, those
methods which had energy saving as their

prime motivation in every case produced
concrete results. For example, Method 4.3
(narrow word coding+ IDT) halves the en-
ergy need by reducing the width of the bus
connected to the external code memory.

It may be generally concluded that
this issue mostly depends on the hard-
ware architecture used for decompression
and/or interpretation. This suggests that
the compression ratio is not always the
key factor in this issue. This is also clearly
seen in the improved version of Method
4.6. Here, access to external memory is
decreased, hence there may be a close
correlation (they could be proportional)
between energy saving and compressed
code-size (provided that cache activity con-
sumes less energy).

Other code-size reduction methods such
as compactors (type CPR-1) are not pri-
marily designed for energy saving. In
fact, one may have a general feeling
that code factoring methods (as part of
some compactors) usually produce more
instructions to be executed in runtime,
therefore external memory is accessed
more frequently. However, if caching is
used, this might not be true. More-
over, some methods from the Squeeze
approach (Section 4.2) decrease the cost
of the executed instructions (time- or
energy-cost). This includes strength re-
duction techniques, where a costly code
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fragment is replaced by a cheaper one.
And, of course, since smaller RAM chips
are needed this will have a benefit regard-
ing cost and energy.

Interpreter- and JIT compiler-based
methods (type CPR-3) can rarely be ap-
plied to energy saving. However, one issue
is worth considering here: if the RAM in
the ASIC is large enough (to hold larger
units for decompression, e.g., granularity
CGR-5) and if accessing it consumes less
energy than the external ROM, then di-
rect in-RAM decompression and execution
could be employed (recall that these meth-
ods can produce good compression ratios).

Our overall conclusion here is that more
methods should be combined in order to
achieve the best energy saving results. In
particular, we should remember that en-
ergy saving does not just depend on code
compression, but other hardware/software
co-design and architectural issues as well.
As was once pointed out, “energy saving is
a system-wide exercise.”

6. SUMMARY AND CONCLUSION

In this paper, we surveyed 12 methods for
code-size reduction, published in some 50
articles from 1984 to date. They differ in
many ways because they often have dif-
ferent motivations and application areas,
ranging from network traffic minimiza-
tion to energy saving in embedded sys-
tems. The basic size-reduction principle is
also very diverse, like code compaction and
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Fig. 5 . Effect on the number of executed instructions (EEX).

hardware-based decompression and inter-
pretation.

We propose two sets of broad assess-
ment criteria which (1) classify the meth-
ods and (2) evaluate their effects. This type
of survey methodology was chosen because
the classification of the methods is difficult
due to their diversity and because the ef-
fects can be independently monitored. The
effects of the methods are grouped in var-
ious ways including the most obvious one,
that for the compression ratio.

Evaluation results are presented where
the different assessment criteria are
jointly evaluated for all of the methods in-
vestigated. A direct comparison of the var-
ious aspects of the methods (assessment
criteria) is difficult because, in many cases,
the publications do not provide enough in-
formation about the methods and, when
they do, the data is often not directly com-
parable because of the different environ-
ments used for the experiments.

We may conclude that there is no such
thing as “the best method for code-size re-
duction” since all methods examined here
perform well in different usage contexts.
We should only seek to provide a good ba-
sis for selecting the best candidate or, at
least, offer some guidelines on the scope
of applicability and achievable effects vs.
affordable trade-offs.

APPENDIX

In Figures 5 to 10, the effects are summari-
zed for the methods that we investigated.
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Fig. 6 . Effect on the execution speed (EES).
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Fig. 7 . Effect on the compression time/complexity (ECT).
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Fig. 8 . Effect on the decompression time/complexity (EDT).
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Fig. 9 . Effect on the behavior safety (EBE).
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Fig. 10 . Effect on the energy consumption (EEN).
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ARAÚJO, G., CENTODUCATTE, P., AZEVEDO, R., AND PAN-
NAIN, R. 2000b. Expression tree based algo-
rithms for code compression on embedded RISC
architectures. IEEE Trans. VLSI Syst. 8, 5 (Oct.),
530–533.
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